Adv Biol (Weinh)
January 2022
Sperm maturation during epididymal transit is a long and complex process. Although the roles of epididymal extracellular vesicles (EVs) on sperm quality have been extensively studied in recent years, there are still a lot of unexplored areas and too few species that are studied. The objective of this review is to focus on the contribution of epididymal EVs through the apocrine secretion of key factors, including proteins and small RNAs.
View Article and Find Full Text PDFPurpose: Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer key factors to maturing spermatozoa. Using an in vitro system previously developed in our laboratory, the objective was to (1) characterize the impact of EV exposure on the fertilizing ability and developmental potential of immature sperm cells from the caput epididymidis and (2) examine the benefit of EV exposure to restore vitality of mature spermatozoa from the cauda epididymidis after freezing-thawing.
Methods: EVs were isolated from entire epididymides and collected into pellets via ultracentrifugation.
Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS.
View Article and Find Full Text PDFExtra-pair paternity may drive selection on spermatozoa and ejaculate characteristics through sperm competition and cryptic female choice. Here, we examine sperm morphology in the black-throated blue warbler (), an ecological model species where extra-pair paternity is frequent and is linked with male age. We test whether sperm morphology relates to several aspects of male phenotype known or suspected to affect extra-pair paternity success.
View Article and Find Full Text PDFPurpose: Spermatozoa undergo critical changes in structure and function during the epididymal transit. Our previous studies in the domestic cat demonstrated that incidence of cenexin-a key protein involved in the centrosomal maturation-progressively increases in sperm cells from caput to cauda epididymidis. The objectives of the study were to (1) characterize mechanisms involved in transferring key factors-using the cenexin as a marker-between the epididymis and maturing sperm cells and (2) demonstrate the impact of such mechanisms on the acquisition of functional properties by spermatozoa.
View Article and Find Full Text PDF