Publications by authors named "Tricht I"

Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis.

View Article and Find Full Text PDF

Background: Normothermic machine perfusion (NMP) is typically performed after a period of hypothermic preservation, which exposes the kidney to an abrupt increase in temperature and intravascular pressure. The resultant rewarming injury could be alleviated by gradual rewarming using controlled oxygenated rewarming (COR). This study aimed to establish which rewarming rate during COR results in the best protective effect on renal rewarming injury during subsequent NMP.

View Article and Find Full Text PDF

Background: A modified Blalock-Taussig (mBT) shunt is an anastomosis created between the systemic and pulmonary arterial tree in order to improve pulmonary blood flow in neonates and children with congenital heart disease. The aim of this study was to assess vascular resistance-flow relationship in an in vitro set-up of a modified Blalock Taussig shunt.

Methods: A shunt set-up was constructed with the vessels of a sheep.

View Article and Find Full Text PDF

Rationale And Objectives: In experimental models of the left heart, the mitral valve (MV) is commonly implanted perpendicular to a central axis of the apex/MV. To adapt this to a more correct anatomical model, as well as for further studies of the left ventricle, we created a database of implantation angles of the MV and annulus during three main phases of the heart cycle, based on standard cardiac ultrasound measurements.

Materials And Methods: Twenty-eight patients were studied with the standard cardiac ultrasound equipment.

View Article and Find Full Text PDF

The aim of our study is to investigate with computational fluid dynamics (CFD) whether different arterial anastomotic geometries result in a different hemodynamics at the arterial (AA) and venous anastomosis (VA) of hemodialysis vascular access grafts. We have studied a 6mm graft (CD) and a 4-7 mm graft (TG). A validated three-dimensional CFD model is developed to simulate flow in the two graft types.

View Article and Find Full Text PDF

This review article describes the current state of affairs concerning in vivo, in vitro and in numero studies on the hemodynamics in vascular access for hemodialysis. The use and complications of autogenous and non-autogenous fistulas and catheters and access port devices are explained in the first part. The major hemodynamic complications are stenosis, initiated by intimal hyperplasia development, and thrombosis.

View Article and Find Full Text PDF

The hemodynamics in the vascular access graft are influenced by the flow aspirated and injected through the two needles during hemodialysis. For the first time, the impact of needle flow on vascular access performance, measured in an in vitro set up, is reported. A vascular access model, consisting of a loop polytetrafluoroethylene graft sewn to a compliant artery and vein, simulated the patient.

View Article and Find Full Text PDF

The major complication that occurs with grafts used as vascular access for hemodialysis, is stenosis at the venous anastomosis or in the draining vein. 75% area stenosis is considered significant as thrombotic occlusion may occur. The aim of this experimental study was to evaluate invasive and noninvasive indices to detect significant stenoses in a vascular access graft.

View Article and Find Full Text PDF

Background: Hemodialysis patients require a vascular access to deliver sufficient blood flow to the artificial kidney. Of these vascular accesses, 30% are prosthetic (mainly polytetrafluorethylene [PTFE]) graft implants. These grafts are prone to the development of stenosis in the vein due to intimal hyperplasia, subsequently leading to thrombosis and graft failure.

View Article and Find Full Text PDF

A three-dimensional finite volume model of the blood-dialysate interface over the complete length of the dialyzer was developed. Different equations govern dialyzer flow and pressure distribution (Navier-Stokes) and radial transport (Darcy). Blood was modeled as a non-Newtonian fluid with a viscosity varying in radial and axial direction determined by the local hematocrit, the diameter of the capillaries, and the local shear rate.

View Article and Find Full Text PDF