Shape measurement of single nanoparticles in fluids is an outstanding challenge with applications in characterizing synthetic functional nanoparticles and in early warning detection of rod-shaped pathogens in water supplies. Here we introduce a novel technique to measure the aspect ratio of rod-shaped particles by analyzing changes in the polarization state of a laser beam transmitted through an optical microcavity through which the particle diffuses. The resolution in aspect ratio measurement is found to be around 1%.
View Article and Find Full Text PDFWe introduce a method for analyzing the physical properties of nanoparticles in fluids the competition between viscous drag and optical forces in a microfluidic device with integrated optical microcavities. The optical microcavity acts as a combined optical trap and sensor, such that the time duration of individual particle detection events can be used as a measure of particle size a parameter which represents the dielectric polarizability per unit radius. Characterization of polymer particles with diameters as small as 140 nm is reported, below that used in previous optical sorting approaches and in the size range of interest for nanomedicine.
View Article and Find Full Text PDFIn this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe in an optical microcavity, forming part-light-part-matter exciton-polaritons.
View Article and Find Full Text PDFWe report progress in the development of tunable room temperature triggered single photon sources based on single nitrogen-vacancy (NV) centres in nanodiamond coupled to open access optical micro-cavities. The feeding of fluorescence from an NV centre into the cavity mode increases the spectral density of the emission and results in an output stream of triggered single photons with spectral line width of order 1 nm, tunable in the range 640 - 700 nm. We record single photon purities exceeding 96% and estimated device efficiencies up to 3%.
View Article and Find Full Text PDFCharacterization and trapping of nanoparticles in solution is of great importance for lab-on-a-chip applications in biomedical, environmental, and materials sciences. Devices are now starting to emerge allowing such manipulations and investigations in real-time. Better insights into the interaction between the nanoparticle and the optical trap is therefore necessary in order to move forward in this field.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides exhibit strong optical transitions with significant potential for optoelectronic devices. In particular they are suited for cavity quantum electrodynamics in which strong coupling leads to polariton formation as a root to realisation of inversionless lasing, polariton condensation and superfluidity. Demonstrations of such strongly correlated phenomena to date have often relied on cryogenic temperatures, high excitation densities and were frequently impaired by strong material disorder.
View Article and Find Full Text PDFThe recent development of open-access optical microcavities opens up a number of intriguing possibilities in the realm of chemical sensing. We provide an overview of the different possible sensing modalities, with examples of refractive index sensing, optical absorption measurements, and optical tracking and trapping of nanoparticles. The extremely small mode volumes within an optical microcavity allow very small numbers of molecules to be probed: our current best detection limits for refractive index and absorption sensing are around 10(5) and 10(2) molecules, respectively, with scope for further improvements in the future.
View Article and Find Full Text PDFWe report an extended family of spin textures of zero-dimensional exciton-polaritons spatially confined in tunable open microcavity structures. The transverse-electric-transverse-magnetic (TE-TM) splitting, which is enhanced in the open cavity structures, leads to polariton eigenstates carrying quantized spin vortices. Depending on the strength and anisotropy of the cavity confining potential and of the TE-TM induced splitting, which can be tuned via the excitonic or photonic fractions, the exciton-polariton emissions exhibit either spin-vortex-like patterns or linear polarization, in good agreement with theoretical modeling.
View Article and Find Full Text PDFLayered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells.
View Article and Find Full Text PDFOpen-access optical microcavities are emerging as an original tool for light-matter studies thanks to their intrinsic tunability and the direct access to the maximum of the electric field along with their small mode volume. In this article, we present recent developments in the fabrication of such devices demonstrating topographic control of the micromirrors at the nanometer scale as well as a high degree of reproducibility. Our method takes into account the template shape as well as the effect of the dielectric mirror growth.
View Article and Find Full Text PDFIntegration of quasi-two-dimensional (2D) films of metal-chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.
View Article and Find Full Text PDFOpen-access optical microcavities provide a novel approach to label-free lab-on-a-chip optofluidic sensing. They offer direct access to a highly confined electromagnetic field, and yield a femtoliter detection volume. This article describes the characteristics of these devices for refractive index sensing.
View Article and Find Full Text PDFBrain protection of the newborn remains a challenging priority and represents a totally unmet medical need. Pharmacological inhibition of caspases appears as a promising strategy for neuroprotection. In a translational perspective, we have developed a pentapeptide-based group II caspase inhibitor, TRP601/ORPHA133563, which reaches the brain, and inhibits caspases activation, mitochondrial release of cytochrome c, and apoptosis in vivo.
View Article and Find Full Text PDFThe ozonation of d-glucose-1-(13)C, 2-(13)C, and 6-(13)C was carried out at pH 2.5 in a semi-batch reactor at room temperature. The products present in the liquid phase were analyzed by GC-MS, HPAEC-PAD, and (13)C NMR spectroscopy.
View Article and Find Full Text PDF[1-(13)C], [2-(13)C] and [6-(13)C] D-glucose were, respectively, ozonized in a semi-batch reactor in acidic and basic conditions. The composition of the gas phase was evaluated by on-line mass spectrometry measurements. The quantitative and isotopic analyses of the carbon dioxide formed during ozonization are presented and discussed.
View Article and Find Full Text PDF