Publications by authors named "Trias N Thireou"

A series of 2,2'-dihydroxybenzophenones and their carbonyl N-analogues were studied as potential inhibitors against human glutathione transferase M1-1 (hGSTM1-1) purified from recombinant E. coli. Their screening revealed an inhibition against hGSTM1-1 within a range of 0-42% (25 μM).

View Article and Find Full Text PDF

The selectivity of certain benzophenones and their carbonyl N-analogues was investigated towards the human GSTP1-1 allozymes A, B and C involved in MDR. The allozymes were purified from extracts derived from E. coli harbouring the plasmids pEXP5-CT/TOPO-TA-hGSTP1*A, pOXO4-hGSTP1*B or pOXO4-hGSTP1*C.

View Article and Find Full Text PDF

The MDR-involved human GSTA1-1, an important isoenzyme overexpressed in several tumors leading to chemotherapeutic-resistant tumour cells, has been targeted by 2,2'-dihydroxybenzophenones and some of their carbonyl N-analogues, as its potential inhibitors. A structure-based library of the latter was built-up by a nucleophilic cleavage of suitably substituted xanthones to 2,2'-dihydroxy-benzophenones (5-9) and subsequent formation of their N-derivatives (oximes 11-13 and N-acyl hydrazones 14-16). Screening against hGSTA1-1 led to benzophenones 6 and 8, and hydrazones 14 and 16, having the highest inhibition potency (IC₅₀ values in the range 0.

View Article and Find Full Text PDF

Glutathione transferases (GSTs) are cell detoxifiers involved in multiple drug resistance (MDR), hampering the effectiveness of certain anticancer drugs. To our knowledge, this is the first report on well-defined synthetic xanthones as GST inhibitors. Screening 18 xanthones revealed three derivatives bearing a bromomethyl and a methyl group (7) or two bromomethyl groups (8) or an aldehyde group (17), with high inhibition potency (>85%), manifested by low IC(50) values (7: 1.

View Article and Find Full Text PDF

Overexpression of human GSTA1-1 in tumor cells is part of MDR mechanisms. We report on the synthesis of 11 pyrrole derivatives as hGSTA1-1 inhibitors starting from 1-methyl-2-[(2-nitrobenzylsulfanyl]-1H-pyrrole. Molecular modeling revealed two locations in the enzyme H binding site: the catalytic primary one accommodating shorter and longer derivatives and the secondary one, where shorter derivatives can occupy.

View Article and Find Full Text PDF