Publications by authors named "Trias J"

Background And Objectives: Evidence is needed on effective approaches to build parents' ability to promote child development feasible in low- and middle-income countries. Our objective was to synthesize impact of the Reach Up early childhood parenting program in several low- and middle-income countries and examine moderation by family and implementation characteristics.

Methods: Systematic search using PubMed and Academic Search Elite/EBSCO Host.

View Article and Find Full Text PDF

Myeloid sarcoma is a solid hematological tumor consisting of growing immature myeloid cells in tissues outside the bone marrow. Myeloid sarcoma presenting before the onset of bone marrow disease is rare. Here, we report the case of a young 35-year-old male who presented with testicular mass and was diagnosed with widespread myeloid sarcoma involving internal organs like heart, kidney and gallbladder.

View Article and Find Full Text PDF

The use of apple pomace flour (APF) as a fibre enrichment strategy was investigated. The aim of this study was to evaluate consumers' response to intrinsic and extrinsic properties of a bakery premix product when using APF. Apple pomace, a by-product from the juice industry, was dried and ground.

View Article and Find Full Text PDF

Acute lung injury is a life-threatening condition characterized by surfactant dysfunction and raised secretory phospholipase A2 (sPLA2) activity. Varespladib is a sPLA2 inhibitor shown to be effective in animal models of acute lung injury. We aimed at investigating the effect of co-administration of surfactant and varespladib on sPLA2 activity.

View Article and Find Full Text PDF

Objective: To study communication disability in stroke patients with aphasia.

Patients And Methods: Prospective, multicentric cohort study of patients with aphasia, consecutively included after a first stroke, and examined 1 year later at home. Assessment included a stroke severity scale, the Barthel Index, the boston diagnostic aphasia examination, a communication questionnaire, and the aphasia depression rating scale.

View Article and Find Full Text PDF

Secretory phospholipase A2 (sPLA2), which links surfactant catabolism and lung inflammation, is associated with lung stiffness, surfactant dysfunction, and degree of respiratory support in acute respiratory distress syndrome and in some forms of neonatal lung injury. Varespladib potently inhibits sPLA2 in animal models. The authors investigate varespladib ex vivo efficacy in different forms of neonatal lung injury.

View Article and Find Full Text PDF

Importance Of The Field: The high risk of recurrent cardiovascular events amongst patients with cardiovascular disease receiving evidence-based therapies has prompted investigations into complimentary treatments that may reduce residual risk. Analyses of clinical trials in statin-treated patients demonstrate that elevated lipid levels and an activated systemic inflammatory state are associated with a higher risk of recurrent cardiovascular events.

Areas Covered In This Review: This article reviews evidence supporting the causal role for secretory phospholipase A(2) (sPLA(2)) in experimental atherosclerosis, the involvement of various sPLA(2) isozymes as mediators of pro-atherogenic lipoprotein remodeling and participants in vascular and systemic inflammatory responses, and the evidence that sPLA(2) inhibition reduces atherosclerosis in experimental models and biomarkers associated with cardiovascular events in coronary heart disease (CHD) patients.

View Article and Find Full Text PDF

Background: The association of elevated serum levels of secretory phospholipase A2 (sPLA2) in patients with cardiovascular disease and their presence in atherosclerotic lesions suggest the participation of sPLA2 enzymes in this disease. The presence of more advanced atherosclerotic lesions in mice that overexpress sPLA2 enzymes suggest their involvement in the atherosclerotic process. Therefore, the sPLA2 family of enzymes could provide reasonable targets for the prevention and treatment of atherosclerosis.

View Article and Find Full Text PDF

The family of secretory phospholipase A2 (sPLA2) enzymes has been associated with inflammatory diseases and tissue injury including atherosclerosis. A-001 is a novel inhibitor of sPLA2 enzymes discovered by structure-based drug design, and A-002 is the orally bioavailable prodrug currently in clinical development. A-001 inhibited human and mouse sPLA2 group IIA, V, and X enzymes with IC50 values in the low nM range.

View Article and Find Full Text PDF

Secretory phospholipase A2 (sPLA2) activity promotes foam cell formation, increases proinflammatory bioactive lipid levels, decreases HDL levels, increases atherosclerosis in transgenic mice, and is an independent marker of cardiovascular disease. The effects of the sPLA2 inhibitor A-002 (varespladib) and pravastatin as monotherapies and in combination on atherosclerosis, lipids, and paraoxonase (PON) activity in apoE(-/-) mice were investigated. Male apoE(-/-) mice were placed on a 12-week high-fat diet supplemented with A-002 alone or combined with pravastatin.

View Article and Find Full Text PDF

The synthesis and evaluation of novel azetidine lincosamides 1 are described. Eleven new (3-trans-alkyl)azetidine-2-carboxylic acids were synthesized via alkylation of N-TBS-4-oxo-azetidine-2-carboxylic acid and subsequent elaboration then coupled to 7-chloro-1-methylthio-lincosamine. The resulting lincosamides differ from the drug clindamycin in both the size of the ring and the position/structure of the alkyl side-chain.

View Article and Find Full Text PDF

The chemotactic migration of phagocytes to sites of infection, guided by gradients of microbial molecules, plays a key role in the first line of host defence. Bacteria are distinguished from eukaryotes by initiation of protein synthesis with formyl methionine. Synthetic formylated peptides (FPs) have been shown to be chemotactic for phagocytes, leading to the concept of FPs as pathogen-associated molecular patterns (PAMPs).

View Article and Find Full Text PDF

Background: Until recently, all cornea information at our tissue bank was managed manually, no specific database or computer tool had been implemented to provide electronic versions of documents and medical reports. The main objective of the BanTeC project was therefore to create a computerized system to integrate and classify all the information and documents used in the center in order to facilitate management of retrieved, transplanted corneal tissues.

Materials And Methods: We used the Windows platform to develop the project.

View Article and Find Full Text PDF

Objectives: Dalbavancin is a novel, semi-synthetic glycopeptide antibiotic. The aim of this study was to further explore its activity against staphylococci.

Methods: The bactericidal activity of dalbavancin was studied using MBC and time-kill methods.

View Article and Find Full Text PDF

Deoxynegamycin (1b) is a protein synthesis inhibitor with activity against Gram-negative (GN) bacteria. A series of conformationally restricted analogs were synthesized to probe its bioactive conformation. Indeed, some of the constrained analogs were found to be equal or better than deoxynegamycin in protein synthesis assay (1b, IC(50)=8.

View Article and Find Full Text PDF

Peptide deformylase (PDF), a metallohydrolase essential for bacterial growth, is an attractive target for use in the discovery of novel antibiotics. Focused chelator-based chemical libraries were constructed and screened for inhibition of enzymatic activity, inhibition of Staphylococcus aureus growth, and cytotoxicity. Positive compounds were selected based on the results of all three assays.

View Article and Find Full Text PDF

We report the synthesis and biological activity of analogues of VRC3375 (N-hydroxy-3-R-butyl-3-[(2-S-(tert-butoxycarbonyl)-pyrrolidin-1-ylcarbonyl]propionamide), an orally active peptide deformylase inhibitor. This study explores the structure-activity relationship of various chelator groups, alpha substituents, P(2)' and P(3)' substituents in order to achieve optimal antibacterial activity with minimal toxicity liability.

View Article and Find Full Text PDF

Antimicrobial compounds incorporating oxazolidinone and quinolone pharmacophore substructures have been synthesized and evaluated. Representative analogues 2, 5, and 6 display an improved potency versus linezolid against gram-positive and fastidious gram-negative pathogens. The compounds are also active against linezolid- and ciprofloxacin-resistant Staphylococcus aureus and Enterococcus faecium strains.

View Article and Find Full Text PDF

Combinatorial libraries of N-acylated 5-(S)-aminomethyloxazolidinone derivatives of S-oxide and S,S-dioxide tetrahydro-4(2H)-thiopyranyl and thiomorpholine phenyloxazolidinone series have been synthesized on a solid phase and evaluated for antimicrobial activity. Several novel potent leads have been identified, including orally active oxazolidinones with enhanced activity against respiratory tract infection pathogens Haemophilus influenzae and Moraxella catarrhalis.

View Article and Find Full Text PDF

Faced with a wealth of antibacterial drug discovery targets as a result of bacterial genomics, we need to carefully select which ones to work with. Choosing bacterial metalloenzymes is one possible approach that can increase the probability of success. Metalloenzymes can be identified through specific motif searches of bacterial genomes.

View Article and Find Full Text PDF

Thiazole peptide GE2270 A (1) possesses potent antimicrobial activity against many gram-positive pathogens, including methicillin resistant Staphylococcus aureus (S. aureus, MRSA; MIC(90)=0.06 microg/mL) and vancomycin resistant Enterococcus spp.

View Article and Find Full Text PDF

Covalent dimerization and oligomerization of vancomycin is an important and extensively used strategy to develop analogues active against vancomycin resistant enteroccoci (VRE). Here, we have carried out investigations to probe the role of peptide binding (Lys-d-Ala-d-Lac) in the high anti-VRE activities of covalently linked vancomycin dimers. Covalent dimers of damaged vancomycin (desleucyl) were prepared, and their anti-VRE activities and binding affinities toward various model peptides were measured.

View Article and Find Full Text PDF

Negamycin 1 is a bactericidal antibiotic with activity against Gram-negative bacteria, and served as a template in an antibiotic discovery program. An orthogonally protected beta-amino acid derivative 3a was synthesized and used in parallel synthesis of negamycin derivatives on solid support. This advanced intermediate was also used for N- and C-terminal modifications using solution-phase methodologies.

View Article and Find Full Text PDF

Dimeric vancomycin analogues based on a lead compound identified from a library of synthetic analogues of vancomycin have up to 60-fold greater activity than vancomycin against vancomycin-resistant Enterococcus faecium (VRE, VanA phenotype). Simplified analogues have also been prepared and found to maintain activity against VRE and have broad-spectrum antibiotic activity.

View Article and Find Full Text PDF

Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P(1)' site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P(1)' site.

View Article and Find Full Text PDF