Publications by authors named "Tria F"

Prokaryotic genomes constantly undergo gene flux via lateral gene transfer, generating a pangenome structure consisting of a conserved core genome surrounded by a more variable accessory genome shell. Over time, flux generates change in genome content. Here, we measure and compare the rate of genome flux for 5655 prokaryotic genomes as a function of amino acid sequence divergence in 36 universally distributed proteins of the informational core (IC).

View Article and Find Full Text PDF

The determination of the last common ancestor (LCA) of a group of species plays a vital role in evolutionary theory. Traditionally, an LCA is inferred by the rooting of a fully resolved species tree. From a theoretical perspective, however, inference of the LCA amounts to the reconstruction of just one branch-the root branch-of the true species tree and should therefore be a much easier task than the full resolution of the species tree.

View Article and Find Full Text PDF

All eukaryotes have linear chromosomes that are distributed to daughter nuclei during mitotic division, but the ancestral state of nuclear division in the last eukaryotic common ancestor (LECA) is so far unresolved. To address this issue, we have employed ancestral state reconstructions for mitotic states that can be found across the eukaryotic tree concerning the intactness of the nuclear envelope during mitosis (open or closed), the position of spindles (intranuclear or extranuclear), and the symmetry of spindles being either axial (orthomitosis) or bilateral (pleuromitosis). The data indicate that the LECA possessed closed orthomitosis with intranuclear spindles.

View Article and Find Full Text PDF

The rooting of phylogenetic trees permits important inferences about ancestral states and the polarity of evolutionary events. Recently, methods that reconcile discordance between gene-trees and species-trees-tree reconciliation methods-are becoming increasingly popular for rooting species trees. Rooting via reconciliation requires values for a particular parameter, the gene transfer to gene duplication ratio (T:D), which in current practice is estimated on the fly from discordances observed in the trees.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are heterogeneous groups of clonal myeloid disorders characterized by unexplained persistent peripheral blood (PB) cytopenia(s) of one or more of the hematopoietic lineages, or bone marrow (BM) morphologic dysplasia in hematopoietic cells, recurrent genetic abnormalities, and an increased risk of progression to acute myeloid leukemia (AML). In the past several years, diagnostic, prognostic, and therapeutic approaches have substantially improved with the development of Next Generation Sequencing (NGS) diagnostic testing and new medications. However, there is no single diagnostic parameter specific for MDS, and correlations with clinical information, and laboratory test findings are needed to reach the diagnosis.

View Article and Find Full Text PDF

Two main theories have been put forward to explain the origin of mitochondria in eukaryotes: phagotrophic engulfment (undigested food) and microbial symbiosis (physiological interactions). The two theories generate mutually exclusive predictions about the order in which mitochondria and phagocytosis arose. To discriminate the alternatives, we have employed ancestral state reconstructions (ASR) for phagocytosis as a trait, phagotrophy as a feeding habit, the presence of mitochondria, the presence of plastids, and the multinucleated organization across major eukaryotic lineages.

View Article and Find Full Text PDF

The contribution of gene duplications to the evolution of eukaryotic genomes is well studied. By contrast, studies of gene duplications in prokaryotes are scarce and generally limited to a handful of genes or careful analysis of a few prokaryotic lineages. Systematic broad-scale studies of prokaryotic genomes that sample available data are lacking, leaving gaps in our understanding of the contribution of gene duplications as a source of genetic novelty in the prokaryotic world.

View Article and Find Full Text PDF

Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms.

View Article and Find Full Text PDF

Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial anaerobes, we identified 146 protein families that trace to the last bacterial common ancestor, LBCA, and form the conserved predicted core of its metabolic network, which requires only nine genes to encompass all universal metabolites.

View Article and Find Full Text PDF

The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA.

View Article and Find Full Text PDF

Metagenomic studies permit the exploration of microbial diversity in a defined habitat, and binning procedures enable phylogenomic analyses, taxon description, and even phenotypic characterizations in the absence of morphological evidence. Such lineages include asgard archaea, which were initially reported to represent archaea with eukaryotic cell complexity, although the first images of such an archaeon show simple cells with prokaryotic characteristics. However, these metagenome-assembled genomes (MAGs) might suffer from data quality problems not encountered in sequences from cultured organisms due to two common analytical procedures of bioinformatics: assembly of metagenomic sequences and binning of assembled sequences on the basis of innate sequence properties and abundance across samples.

View Article and Find Full Text PDF

Taylor's law quantifies the scaling properties of the fluctuations of the number of innovations occurring in open systems. Urn-based modeling schemes have already proven to be effective in modeling this complex behaviour. Here, we present analytical estimations of Taylor's law exponents in such models, by leveraging on their representation in terms of triangular urn models.

View Article and Find Full Text PDF

Lateral gene transfer (LGT) has impacted prokaryotic genome evolution, yet the extent to which LGT compromises vertical evolution across individual genes and individual phyla is unknown, as are the factors that govern LGT frequency across genes. Estimating LGT frequency from tree comparisons is problematic when thousands of genomes are compared, because LGT becomes difficult to distinguish from phylogenetic artefacts. Here we report quantitative estimates for verticality across all genes and genomes, leveraging a well-known property of phylogenetic inference: phylogeny works best at the tips of trees.

View Article and Find Full Text PDF

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future.

View Article and Find Full Text PDF

Pyruvate kinases (PKs) synthesize ATP as the final step of glycolysis in the three domains of life. PKs from most bacteria and eukarya are allosteric enzymes that are activated by sugar phosphates; for example, the feed-forward regulator fructose-1,6-bisphosphate, or AMP as a sensor of energy charge. Archaea utilize unusual glycolytic pathways, but the allosteric properties of PKs from these species are largely unknown.

View Article and Find Full Text PDF

Zipf's, Heaps' and Taylor's laws are ubiquitous in many different systems where innovation processes are at play. Together, they represent a compelling set of stylized facts regarding the overall statistics, the innovation rate and the scaling of fluctuations for systems as diverse as written texts and cities, ecological systems and stock markets. Many modeling schemes have been proposed in literature to explain those laws, but only recently a modeling framework has been introduced that accounts for the emergence of those laws without deducing the emergence of one of the laws from the others or without ad hoc assumptions.

View Article and Find Full Text PDF

Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information.

View Article and Find Full Text PDF

We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of a given musical corpus. Instead of using the n-body interactions of (n-1)-order Markov models, traditionally used in automatic music generation, we use a k-nearest neighbour model with pairwise interactions only.

View Article and Find Full Text PDF

Creative industries constantly strive for fame and popularity. Though highly desirable, popularity is not the only achievement artistic creations might ever acquire. Leaving a longstanding mark in the global production and influencing future works is an even more important achievement, usually acknowledged by experts and scholars.

View Article and Find Full Text PDF

The emergence of novelties and their rise and fall in popularity is an ubiquitous phenomenon in human activities. The coexistence of popular evergreens with novel and sometimes ephemeral trends pervades technological, scientific and artistic production. Though this phenomenon is very intuitively captured by our common sense, a comprehensive explanation of how waves of novelties are not hampered by well established old-comers is still lacking.

View Article and Find Full Text PDF

The quest for information is one of the most common activity of human beings. Despite the the impressive progress of search engines, not to miss the needed piece of information could be still very tough, as well as to acquire specific competences and knowledge by shaping and following the proper learning paths. Indeed, the need to find sensible paths in information networks is one of the biggest challenges of our societies and, to effectively address it, it is important to investigate the strategies adopted by human users to cope with the cognitive bottleneck of finding their way in a growing sea of information.

View Article and Find Full Text PDF

Rules are an efficient feature of natural languages which allow speakers to use a finite set of instructions to generate a virtually infinite set of utterances. Yet, for many regular rules, there are irregular exceptions. There has been lively debate in cognitive science about how individual learners acquire rules and exceptions; for example, how they learn the past tense of preach is preached, but for teach it is taught.

View Article and Find Full Text PDF

The complex organization of syntax in hierarchical structures is one of the core design features of human language. Duality of patterning refers, for instance, to the organization of the meaningful elements in a language at two distinct levels: a combinatorial level, where meaningless forms are combined into meaningful forms; and a compositional level, where meaningful forms are composed into larger lexical units. The question remains wide open regarding how such structures could have emerged.

View Article and Find Full Text PDF

The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Knowledge and information can be viewed as a complex network, where connections between items can enhance learning efficiency.
  • The authors explore how the topological arrangement of these knowledge items influences learning dynamics through algorithms that mimic effective learning strategies like spaced repetition.
  • Their research, analyzing both synthetic and real-world graphs (like Wikipedia), reveals that certain network structures optimize learning effectiveness by balancing well-connected "hubs" with less connected items.
View Article and Find Full Text PDF