We perform a systematic study of Andreev conversion at the interface between a superconductor and graphene in the quantum Hall (QH) regime. We find that the probability of Andreev conversion from electrons to holes follows an unexpected but clear trend: the dependencies on temperature and magnetic field are nearly decoupled. We discuss these trends and the role of the superconducting vortices, whose normal cores could both absorb and dephase the individual electrons in a QH edge.
View Article and Find Full Text PDFThe vanishing band gap of graphene has long presented challenges for making high-quality quantum point contacts (QPCs)─the partially transparent p-n interfaces introduced by conventional split gates tend to short circuit the QPCs. This complication has hindered the fabrication of graphene quantum Hall Fabry-Pérot interferometers, until recent advances have allowed split-gate QPCs to operate utilizing the highly resistive ν = 0 state. Here, we present a simple recipe to fabricate QPCs by etching a narrow trench in the graphene sheet to separate the conducting channel from self-aligned graphene side gates.
View Article and Find Full Text PDFThe dynamical properties of multiterminal Josephson junctions (MT-JJs) have attracted interest, driven by the promise of new insights into synthetic topological phases of matter and Floquet states. This effort has culminated in the discovery of Cooper multiplets in which the splitting of a Cooper pair is enabled via a series of Andreev reflections that entangle four (or more) electrons. Here, we show that multiplet resonances can also emerge as a consequence of the three-terminal circuit model.
View Article and Find Full Text PDFWhen a Josephson junction is exposed to microwave radiation, it undergoes the inverse AC Josephson effect─the phase of the junction locks to the drive frequency. As a result, the - curves of the junction acquire "Shapiro steps" of quantized voltage. If the junction has three or more superconducting contacts, coupling between different pairs of terminals must be taken into account and the state of the junction evolves in a phase space of higher dimensionality.
View Article and Find Full Text PDFThe AC Josephson effect manifests itself in the form of "Shapiro steps" of quantized voltage in Josephson junctions subject to radiofrequency (RF) radiation. This effect presents an early example of a driven-dissipative quantum phenomenon and is presently utilized in primary voltage standards. Shapiro steps have also become one of the standard tools to probe junctions made in a variety of novel materials.
View Article and Find Full Text PDF