Publications by authors named "Trevor Van Eeuwen"

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket.

View Article and Find Full Text PDF

The mechanisms that regulate the physical properties of the cell interior remain poorly understood, especially at the mesoscale (10nm-100nm). Changes in these properties have been suggested to be crucial for both normal physiology and disease. Many crucial macromolecules and molecular assemblies such as ribosomes, RNA polymerase, and biomolecular condensates span the mesoscale size range.

View Article and Find Full Text PDF
Article Synopsis
  • Direct methods for assessing DNA polymerase fidelity are straightforward, but measuring RNA polymerases and reverse transcriptases is trickier due to extra preparation steps that can lead to errors.
  • The new method, Roll-Seq, uses single molecule real-time sequencing to evaluate the fidelity of RNA polymerases and reverse transcriptases simultaneously, by generating long concatemeric cDNA from a circular RNA template.
  • Roll-Seq results showed that while some reverse transcriptases had consistent substitution rates, others demonstrated lower fidelity during second-strand synthesis, highlighting the importance of RNA structure on polymerase accuracy.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the structure and function of the HIRA/Hir histone chaperone complex in collaboration with ASF1a/Asf1, which are essential for depositing histone tetramers onto DNA for chromatin assembly without replication.
  • - Researchers used cryo-electron microscopy (cryo-EM) to reveal the architecture of the S. cerevisiae Hir complex, finding that it forms an arc-shaped dimer with a specific arrangement of its subunits, which helps in positioning histones effectively.
  • - The findings indicate that the Hir/Asf1 complex works to enhance histone tetramer formation and their integration into DNA, showcasing a potential mechanism for chromatin assembly.
View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket.

View Article and Find Full Text PDF
Article Synopsis
  • The LINE-1 retrotransposon is a significant genetic element in humans, contributing to about a third of our genome via a 'copy and paste' method driven by its enzyme, ORF2p, which is linked to diseases like cancer and autoimmunity.
  • Recent studies using X-ray crystallography and cryo-electron microscopy have revealed new structural details of ORF2p, including previously unknown domains and a dynamic conformation that changes during the retrotransposition process.
  • The findings enhance our understanding of L1 replication and its effects on immune responses, creating potential pathways for drug development targeting L1 and related cellular processes.
View Article and Find Full Text PDF

Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.

View Article and Find Full Text PDF

Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast NPCs at transport-relevant timescales.

View Article and Find Full Text PDF

Fusicoccadiene synthase from the fungus (PaFS) is an assembly-line terpene synthase that catalyzes the first two steps in the biosynthesis of Fusiccocin A, a diterpene glycoside. The C-terminal prenyltransferase domain of PaFS catalyzes the condensation of one molecule of C dimethylallyl diphosphate and three molecules of C isopentenyl diphosphate to form C geranylgeranyl diphosphate, which then transits to the cyclase domain for cyclization to form fusicoccadiene. Previous structural studies of PaFS using electron microscopy (EM) revealed a central octameric prenyltransferase core with eight cyclase domains tethered in random distal positions through flexible 70-residue linkers.

View Article and Find Full Text PDF

Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin's mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.

View Article and Find Full Text PDF

Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions.

View Article and Find Full Text PDF

The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.

View Article and Find Full Text PDF

During transcription initiation, the general transcription factor TFIIH marks RNA polymerase II by phosphorylating Ser5 of the carboxyl-terminal domain (CTD) of Rpb1, which is followed by extensive modifications coupled to transcription elongation, mRNA processing, and histone dynamics. We have determined a 3.5-Å resolution cryo-electron microscopy (cryo-EM) structure of the TFIIH kinase module (TFIIK in yeast), which is composed of Kin28, Ccl1, and Tfb3, yeast homologs of CDK7, cyclin H, and MAT1, respectively.

View Article and Find Full Text PDF

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc (Complex III, CIII), and may have specific cbb-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa-type CIV. Electron transfer between these complexes is mediated by soluble (c) and membrane-anchored (c) cyts.

View Article and Find Full Text PDF

Actin-related protein (Arp) 2/3 complex nucleates branched actin networks that drive cell motility. It consists of seven proteins, including two actin-related subunits (Arp2 and Arp3). Two nucleation-promoting factors (NPFs) bind Arp2/3 complex during activation, but the order, specific interactions, and contribution of each NPF to activation are unresolved.

View Article and Find Full Text PDF

Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM).

View Article and Find Full Text PDF

The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined.

View Article and Find Full Text PDF