Ferro-rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo-FR crystals (i.e., single FR domain).
View Article and Find Full Text PDFOne of the most significant risk variants for Parkinson's disease (PD), rs356182, is located at the PD-associated locus near the alpha-synuclein (α-syn) encoding gene, SNCA. SNCA-proximal variants, including rs356182, are thought to function in PD risk through enhancers via allele-specific regulatory effects on SNCA expression. However, this interpretation discounts the complex activity of genetic enhancers and possible non-conical functions of α-syn.
View Article and Find Full Text PDFAs researchers grapple with the mechanisms and implications of alpha-synuclein (α-syn) in neuropathology, it is often forgotten that the function(s) of α-syn in healthy cells remain largely elusive. Previous work has relied on observing α-syn localization in the cell or using knockout mouse models. Here, we address the specific role of α-syn in human dopaminergic neurons by disrupting its gene (SNCA) in the human dopaminergic neuron cell line, LUHMES.
View Article and Find Full Text PDFPerovskite photovoltaic ABX systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr . Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures.
View Article and Find Full Text PDFA polycrystalline sample of TlIrO was synthesized by high-pressure and high-temperature methods. TlIrO crystallizes in the cubic pyrochlore structure with space group 3̅ (No. 227).
View Article and Find Full Text PDFBackground: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system.
View Article and Find Full Text PDFGenetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2020
Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y CoIrO and Y CoRuO polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder.
View Article and Find Full Text PDFChem Commun (Camb)
December 2019
The novel two-dimensional honeycomb layered Cu3LiRu2O6 exhibits Pauli-like paramagnetic and Mott variable range hopping semiconduction behaviors, which contradict the large specific-heat Sommerfeld coefficient for metals, and indicate a possible spin-excitation induced nonmetallic metal. This nonmetallic feature can be significantly suppressed by pressure toward producing a bad-metal state, as reflected by the temperature-dependent resistivity response up to 35 GPa.
View Article and Find Full Text PDFThe corundum-related oxides MnScNbO and MnScTaO were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that MnScNbO and MnScTaO crystallize in NiTeO-type noncentrosymmetric crystal structures with space group 3. The asymmetric crystal structure was confirmed by second harmonic generation measurement.
View Article and Find Full Text PDFBackground: Cell-to-cell propagation of α-synuclein (α-syn) aggregates is thought to contribute to the pathogenesis of Parkinson's disease (PD) and underlie the spread of α-syn neuropathology. Increased pro-inflammatory cytokine levels and activated microglia are present in PD and activated microglia can promote α-syn aggregation. However, it is unclear how microglia influence α-syn cell-to-cell transfer.
View Article and Find Full Text PDFDouble-perovskite LuNiIrO was synthesized at high pressure (6 GPa) and high temperature (1300 °C). Synchrotron powder X-ray diffraction indicates that its structure is a monoclinic double perovskite (space group P2/ n) with a small, 11% Ni/Ir antisite disorder. X-ray absorption near-edge spectroscopy measurements established Ni and Ir formal oxidation states.
View Article and Find Full Text PDFIt is generally accepted that chemically synthesized nanoparticles lose their ferroelectricity (spontaneous polarization) as the particles become smaller. In contrast, ball-milled ferroelectric nanoparticles have an enhanced ferroelectric response at remarkably small sizes (≤10 nm). Although prior theory suggests that surface stress influences ferroelectricity, the source of such a stress and how it physically influences ferroelectricity in zero-dimensional nanoparticles has remained a mystery.
View Article and Find Full Text PDFIn genome-wide association studies of complex diseases, many risk polymorphisms are found to lie in non-coding DNA and likely confer risk through allele-dependent differences in gene regulatory elements. However, because distal regulatory elements can alter gene expression at various distances on linear DNA, the identity of relevant genes is unknown for most risk loci. In Parkinson's disease, at least some genetic risk is likely intrinsic to a neuronal subpopulation of cells in the brain regions affected.
View Article and Find Full Text PDFCell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson's disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways.
View Article and Find Full Text PDFMitochondrial and autophagic dysfunction as well as neuroinflammation are involved in the pathophysiology of Parkinson's disease (PD). We hypothesized that targeting the mitochondrial pyruvate carrier (MPC), a key controller of cellular metabolism that influences mTOR (mammalian target of rapamycin) activation, might attenuate neurodegeneration of nigral dopaminergic neurons in animal models of PD. To test this, we used MSDC-0160, a compound that specifically targets MPC, to reduce its activity.
View Article and Find Full Text PDFParkinson's disease is a progressive neurological disorder that is characterized by the formation of intracellular protein inclusion bodies composed primarily of a misfolded and aggregated form of the protein α-synuclein. There is growing evidence that supports the prion-like hypothesis of α-synuclein progression. This hypothesis postulates that α-synuclein is a prion-like pathological agent and is responsible for the progression of Parkinson pathology in the brain.
View Article and Find Full Text PDFWe report a comprehensive study of the crystal structure of (Ga(1-x)Znx)(N(1-x)Ox) solid solution nanoparticles by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga(1-x)Znx)(N(1-x)Ox) nanoparticles, with diameters of 10-27 nm and x = 0.075-0.
View Article and Find Full Text PDFMagnetoelectric (ME) effect is recognized for its utility for low-power electronic devices. Largest ME coefficients are often associated with phase transitions in which ferroelectricity is induced by magnetic order. Unfortunately, in these systems, large ME response is revealed only upon elaborate poling procedures.
View Article and Find Full Text PDFThe rare-earth manganites RMnO3 (R = rare earth) are a class of important multiferroics with stable hexagonal structures for small R ion radius (Sc, Lu, Yb, ...
View Article and Find Full Text PDFJ Phys Condens Matter
November 2012
Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and electrical transport behavior change corresponding to a structural change near 400 K in Ca(3)Co(4)O(9). The lattice parameter c varies smoothly with increasing temperature while anomalies in a, b(1) and b(2) lattice parameters occur near 400 K. The Ca site in the Ca(2)CoO(3) block becomes distorted and a change in electrical transport behavior is found above 400 K.
View Article and Find Full Text PDFWhile pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.
View Article and Find Full Text PDFParkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology.
View Article and Find Full Text PDFBackground: Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. Panagrolaimus superbus is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that P.
View Article and Find Full Text PDFMany researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging.
View Article and Find Full Text PDF