Publications by authors named "Trevor Teafatiller"

The ubiquitin-proteasomal pathway regulates the functional expression of many membrane transporters in a variety of cellular systems. Nothing is currently known about the role of ubiquitin E3 ligase, neural precursor cell-expressed developmentally down-regulated gene 4 (Nedd4-1) and the proteasomal degradation pathway in regulating human vitamin C transporter-2 (hSVCT2) in neuronal cells. hSVCT2 mediates the uptake of ascorbic acid (AA) and is the predominantly expressed vitamin C transporter isoform in neuronal systems.

View Article and Find Full Text PDF

Typhimurium infection of the gastrointestinal tract leads to damage that compromises the integrity of the intestinal epithelium and results in enterocolitis and inflammation. infection promotes the expression of inflammasome NLRP3, leading to activation and release of proinflammatory cytokines such as IL-1, and the infected host often displays altered nutrient levels. To date, the effect of infection and proinflammatory cytokine IL-1 on the intestinal uptake of ascorbic acid (AA) is unknown.

View Article and Find Full Text PDF

Neuronal uptake of ascorbic acid (AA) in humans occurs via the human sodium-dependent vitamin C transporter-2 (hSVCT2). Recent studies show that a significantly lower level of vitamin C is present in the blood of epileptic patients. Consequently, focused studies investigating the involved molecular mechanisms for hSVCT2 regulation are vital to enhance vitamin C body homeostasis.

View Article and Find Full Text PDF

Ascorbic acid (AA) uptake in neurons occurs via a Na-dependent carrier-mediated process mediated by the sodium-dependent vitamin C transporter-2 (SVCT2). Relatively little information is available concerning the network of interacting proteins that support human (h)SVCT2 trafficking and cell surface expression in neuronal cells. Here we identified the synaptogenic adhesion protein, calsyntenin-3 (CLSTN3) as an hSVCT2 interacting protein from yeast two-hybrid (Y2H) screening of a human adult brain cDNA library.

View Article and Find Full Text PDF

Vitamin C is well documented to have antiviral functions; however, there is limited information about its effect on airway epithelial cells-the first cells to encounter infections. Here, we examined the effect of vitamin C on human bronchial epithelium transformed with Ad12-SV40 2B (BEAS-2B) cells, and observed that sodium-dependent vitamin C transporter 2 (SVCT2) was the primary vitamin C transporter. Transcriptomic analysis revealed that treating BEAS-2B cells with vitamin C led to a significant upregulation of several metabolic pathways and interferon-stimulated genes (ISGs) along with a downregulation of pathways involved in lung injury and inflammation.

View Article and Find Full Text PDF

Intestinal absorption of vitamin C in humans is mediated via the sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2). hSVCT1 and hSVCT2 are localized at the apical and basolateral membranes, respectively, of polarized intestinal epithelia. Studies have identified low plasma levels of vitamin C and decreased expression of hSVCT1 in patients with several inflammatory conditions including inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Vitamin C (ascorbic acid: AA) uptake in neurons occurs via the sodium-dependent vitamin C transporter-2 (SVCT2), which is highly expressed in the central nervous system (CNS). During chronic neuroinflammation or infection, CNS levels of lipopolysaccharide (LPS) and LPS-induced tumor necrosis factor- (TNF) are increased. Elevated levels of LPS and TNF have been associated with neurodegenerative diseases together with reduced levels of AA.

View Article and Find Full Text PDF

The process of obtaining ascorbic acid (AA) via intestinal absorption and blood circulation is carrier-mediated utilizing the AA transporters SVCT1 and SVCT2, which are expressed in the intestine and brain (SVCT2 in abundance). AA concentration is decreased in Alzheimer's disease (AD), but information regarding the status of intestinal AA uptake in the AD is still lacking. We aimed here to understand how AA homeostasis is modulated in a transgenic mouse model (5xFAD) of AD.

View Article and Find Full Text PDF

Background: Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated.

Aims: To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters.

View Article and Find Full Text PDF

The human riboflavin (RF) transporter-3 (hRFVT-3; product of the gene) plays an essential role in the intestinal RF absorption process and is expressed exclusively at the apical membrane domain of polarized enterocytes. Previous studies have characterized different physiological/biological aspects of this transporter, but nothing is known about the glycosylation status of the hRFVT-3 protein and role of this modification in its physiology/biology. Additionally, little is known about the residues in the hRFVT-3 protein that interact with the ligand, RF.

View Article and Find Full Text PDF

Background: Brown-Vialetto-Van Laere Syndrome (BVVLS), a rare neurological disorder characterized by bulbar palsies and sensorineural deafness, is mainly associated with defective riboflavin transporters encoded by the SLC52A2 and SLC52A3 genes.

Methods: Here we present a 16-year-old BVVLS patient belonging to a five generation consanguineous family from Indian ethnicity with two homozygous missense mutations viz., c.

View Article and Find Full Text PDF