Publications by authors named "Trevor R Nash"

Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms of myocardial injury in SLE remain poorly understood. In this study, we engineered human cardiac tissues and cultured them with IgG from patients with SLE, with and without myocardial involvement.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a heart-on-a-chip model to study how SARS-CoV-2 affects heart function, especially in patients with existing heart conditions, using human stem cell-derived heart cells.
  • The study found that COVID-19 caused significant heart damage, worsening when combined with angiotensin II, leading to reduced heart contractions and increased inflammation.
  • Extracellular vesicles from stem cells showed potential to protect heart function by reducing damage and enhancing certain gene activities, with specific microRNAs identified as key factors in this protective effect.
View Article and Find Full Text PDF

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate.

View Article and Find Full Text PDF

Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance, there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study, we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function.

View Article and Find Full Text PDF

Epicardial cells (EPIs) form the outer layer of the heart and play an important role in development and disease. Current heart-on-a-chip platforms still do not fully mimic the native cardiac environment due to the absence of relevant cell types, such as EPIs. Here, using the Biowire II platform, engineered cardiac tissues with an epicardial outer layer and inner myocardial structure are constructed, and an image analysis approach is developed to track the EPI cell migration in a beating myocardial environment.

View Article and Find Full Text PDF

Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement.

View Article and Find Full Text PDF

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro.

View Article and Find Full Text PDF

Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.

View Article and Find Full Text PDF
Article Synopsis
  • * LVAD support helped to normalize a small percentage (3.2%) of HF-associated DMPs, indicating limited reversibility of these epigenetic changes post-therapy.
  • * A newly identified long noncoding RNA (LINC00881) showed significant hypermethylation and downregulation in HF, affecting key cardiac gene expressions; the findings suggest that further epigenetic interventions may be essential for long-term recovery from heart
View Article and Find Full Text PDF

In the heart, protein kinase A (PKA) is critical for activating calcium handling and sarcomeric proteins in response to beta-adrenergic stimulation leading to increased myocardial contractility and performance. The catalytic activity of PKA is tightly regulated by regulatory subunits that inhibit the catalytic subunit until released by cAMP binding. Phosphorylation of type II regulatory subunits promotes PKA activation; however, the role of phosphorylation in type I regulatory subunits remain uncertain.

View Article and Find Full Text PDF

Many neuromuscular diseases, such as myasthenia gravis (MG), are associated with dysfunction of the neuromuscular junction (NMJ), which is difficult to characterize in animal models due to physiological differences between animals and humans. Tissue engineering offers opportunities to provide in vitro models of functional human NMJs that can be used to diagnose and investigate NMJ pathologies and test potential therapeutics. By incorporating optogenetic proteins into induced pluripotent stem cells (iPSCs), we generated neurons that can be stimulated with specific wavelengths of light.

View Article and Find Full Text PDF

Engineered cardiac tissues derived from human induced pluripotent stem cells (iPSCs) are increasingly used for drug discovery, pharmacology and in models of development and disease. While there are numerous platforms to engineer cardiac tissues, they often require expensive and nonconventional equipment and utilize complex video-processing algorithms. As a result, only specialized academic laboratories have been able to harness this technology.

View Article and Find Full Text PDF

Functional human tissues engineered from patient-specific induced pluripotent stem cells (hiPSCs) hold great promise for investigating the progression, mechanisms, and treatment of musculoskeletal diseases in a controlled and systematic manner. For example, bioengineered models of innervated human skeletal muscle could be used to identify novel therapeutic targets and treatments for patients with complex central and peripheral nervous system disorders. There is a need to develop standardized and objective quantitative methods for engineering and using these complex tissues, in order increase their robustness, reproducibility, and predictiveness across users.

View Article and Find Full Text PDF

Strategies to regenerate cardiac tissue postinjury are limited and heart transplantation remains the only 'cure' for a failing heart. Extracellular vesicles (EVs), membrane-bound cell secretions important in intercellular signaling, have been shown to play a crucial role in regulating heart function. A mechanistic understanding of the role of EVs in the heart remains elusive due to the challenges in studying the native human heart.

View Article and Find Full Text PDF

Light is necessary for life, but prolonged exposure to artificial light is a matter of increasing health concern. Humans are exposed to increased amounts of light in the blue spectrum produced by light-emitting diodes (LEDs), which can interfere with normal sleep cycles. The LED technologies are relatively new; therefore, the long-term effects of exposure to blue light across the lifespan are not understood.

View Article and Find Full Text PDF

Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium.

View Article and Find Full Text PDF