Publications by authors named "Trevor P Creamer"

Human metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to the following two versions of the N protein in infected cells: N-terminal P residues interact with monomeric N (N) to maintain a pool of protein to encapsidate new RNA and C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA).

View Article and Find Full Text PDF
Calcineurin.

Cell Commun Signal

August 2020

The serine/threonine phosphatase calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates. These substrates include, but are not limited to, transcription factors, receptors and channels, proteins associated with mitochondria, and proteins associated with microtubules. Calcineurin is activated by increases in intracellular calcium concentrations, a process that requires the calcium sensing protein calmodulin binding to an intrinsically disordered regulatory domain in the phosphatase.

View Article and Find Full Text PDF

Recent work has revealed that the association of a disordered region of a protein with a folded binding partner can occur as rapidly as association between two folded proteins. This is the case for the phosphatase calcineurin (CaN) and its association with its activator calmodulin. Calmodulin binds to the intrinsically disordered regulatory domain of CaN.

View Article and Find Full Text PDF

Calcineurin (CaN) is a calcium-dependent phosphatase involved in numerous signaling pathways. Its activation is in part driven by the binding of calmodulin (CaM) to a CaM recognition region (CaMBR) within CaN's regulatory domain (RD). However, secondary interactions between CaM and the CaN RD may be necessary to fully activate CaN.

View Article and Find Full Text PDF

PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.

View Article and Find Full Text PDF

Calcineurin (CaN) is a serine/threonine phosphatase that regulates a variety of physiological and pathophysiological processes in mammalian tissue. The calcineurin (CaN) regulatory domain (RD) is responsible for regulating the enzyme's phosphatase activity, and is believed to be highly-disordered when inhibiting CaN, but undergoes a disorder-to-order transition upon diffusion-limited binding with the regulatory protein calmodulin (CaM). The prevalence of polar and charged amino acids in the regulatory domain (RD) suggests electrostatic interactions are involved in mediating calmodulin (CaM) binding, yet the lack of atomistic-resolution data for the bound complex has stymied efforts to probe how the RD sequence controls its conformational ensemble and long-range attractions contribute to target protein binding.

View Article and Find Full Text PDF

Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear.

View Article and Find Full Text PDF

Calcineurin is a Ser/Thr phosphatase that is important for key biological processes, including immune system activation. We previously identified a region in the intrinsically disordered regulatory domain of calcineurin that forms a critical amphipathic α-helix (the "distal helix") that is required for complete activation of calcineurin. This distal helix was shown to have a Tm close to that of human body temperature.

View Article and Find Full Text PDF

Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined.

View Article and Find Full Text PDF

Calcineurin is an essential serine/threonine phosphatase that plays vital roles in neuronal development and function, heart growth, and immune system activation. Calcineurin is unique in that it is the only phosphatase known to be activated by calmodulin in response to increasing intracellular calcium concentrations. Calcium-loaded calmodulin binds to the regulatory domain of calcineurin, resulting in a conformational change that removes an autoinhibitory domain from the active site of the phosphatase.

View Article and Find Full Text PDF

Calcineurin (CaN) is a calmodulin-activated, serine/threonine phosphatase that is necessary for cardiac, vasculature, and nervous system development, as well as learning and memory, skeletal muscle growth, and immune system activation. CaN is activated in a manner similar to that of the calmodulin (CaM)-activated kinases. CaM binds CaN's regulatory domain (RD) and causes a conformational change that removes CaN's autoinhibitory domain (AID) from its catalytic site, activating CaN.

View Article and Find Full Text PDF
Transient disorder: Calcineurin as an example.

Intrinsically Disord Proteins

September 2013

How intrinsically disordered proteins and regions evade degradation by cellular machinery evolved to recognize unfolded and misfolded chains remains a vexing question. One potential means by which this can occur is the disorder is transient in nature. That is, the disorder exists just long enough for it to be bound by a partner biomolecule and fold.

View Article and Find Full Text PDF

The fungus Aspergillus fumigatus is a leading infectious killer in immunocompromised patients. Calcineurin, a calmodulin (CaM)-dependent protein phosphatase comprised of calcineurin A (CnaA) and calcineurin B (CnaB) subunits, localizes at the hyphal tips and septa to direct A. fumigatus invasion and virulence.

View Article and Find Full Text PDF

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo.

View Article and Find Full Text PDF

In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity.

View Article and Find Full Text PDF

Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between.

View Article and Find Full Text PDF

While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C.

View Article and Find Full Text PDF

The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase.

View Article and Find Full Text PDF

Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTT(NT)) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTT(NT) peptide is a compact coil that resists aggregation.

View Article and Find Full Text PDF

Models of protein folding often hypothesize that the first step is local secondary structure formation. The assumption is that unfolded polypeptide chains possess an intrinsic propensity to form these local secondary structures. On the basis of this idea, it is tempting to model the local conformational properties of unfolded proteins using well-established residue secondary structure propensities, in particular, alpha-helix forming propensities.

View Article and Find Full Text PDF

The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts' alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM) components. The LenA outer surface protein (formerly called LfhA and Lsa24) was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1.

View Article and Find Full Text PDF

Nine neurodegenerative diseases, including Huntington's disease, are associated with the aggregation of proteins containing expanded polyglutamine sequences. The end result of polyglutamine aggregation is a beta-sheet-rich deposit. There exists evidence that an important intermediate in the aggregation process involves intramolecular beta-hairpin structures.

View Article and Find Full Text PDF

Pressure perturbation calorimetry quantifies the temperature dependence of a solute's thermal expansion coefficient, providing information about solute-solvent interactions. We tested the idea that pressure perturbation calorimetry can provide information about solvent-accessible surface area by studying peptides with different secondary structures. The peptides comprised two host-guest series: one predominately an alpha-helix, the other predominately a polyproline II helix.

View Article and Find Full Text PDF

There are nine known expanded CAG repeat neurological diseases, including Huntington's disease (HD), each involving the repeat expansion of polyglutamine (polyGln) in a different protein. Similar conditions can be induced in animal models by expression of the polyGln sequence alone or in other protein contexts. Besides the polyGln sequence, the cellular context of the disease protein, and the sequence context of the polyGln within the disease protein, are both likely to contribute to polyGln physical behavior and to pathology.

View Article and Find Full Text PDF