Background: The leading cause of mortality in patients with Marfan syndrome (MFS) is thoracic aortic aneurysm and dissection. Notch signaling is essential for vessel morphogenesis and function. However, the role of Notch signaling in aortic pathology and aortic smooth muscle cell (SMC) differentiation in Marfan syndrome (MFS) is not completely understood.
View Article and Find Full Text PDFMarfan syndrome (MFS) is a heritable disorder of connective tissue, caused by mutations in the fibrillin-1 gene. Pulmonary functional abnormalities, such as emphysema and restrictive lung diseases, are frequently observed in patients with MFS. However, the pathogenesis and molecular mechanism of pulmonary involvement in MFS patients are underexplored.
View Article and Find Full Text PDFObjective: Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease. Studies of human aneurysm tissue demonstrate dense inflammatory cell infiltrates with CD4 T cells predominating. Regulatory T cells (Tregs) play an important role in inhibiting pro-inflammatory T cell proliferation, therefore, limiting collateral tissue destruction.
View Article and Find Full Text PDFAims: Abdominal aortic aneurysm (AAA) is one of the number of diseases associated with a prominent inflammatory cell infiltration, matrix protein degradation, and smooth muscle cell apoptosis. CD95 is an inflammatory mediator and an apoptosis inducer. Previous studies have shown elevated expression of CD95 or CD95L in the aortic tissue of AAA patients.
View Article and Find Full Text PDFObjective: Abdominal aortic aneurysms are inflammatory in nature and are associated with some risk factors that also lead to atherosclerotic occlusive disease, most notably smoking. The purpose of our study was to identify differential cytokine expression in patients with abdominal aortic aneurysm and those with atherosclerotic occlusive disease. Based on this analysis, we further explored and compared the mechanism of action of IL (interleukin)-1β versus TNF-α (tumor necrosis factor-α) in abdominal aortic aneurysm formation.
View Article and Find Full Text PDFThoracic aortic aneurysm and dissection are life-threatening complications of Marfan syndrome (MFS). Studies of human and mouse aortic samples from late stage MFS demonstrate increased TGF-β activation/signaling and diffuse matrix changes. However, the role of the aortic smooth muscle cell (SMC) phenotype in early aneurysm formation in MFS has yet to be fully elucidated.
View Article and Find Full Text PDFAbdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known.
View Article and Find Full Text PDFObjective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
November 2012
Objective: Patients with abdominal aortic aneurysms have lower concentrations of high-density lipoproteins (HDLs), leading us to investigate whether increasing plasma HDLs could influence aneurysm formation.
Methods And Results: Using the angiotensin II-induced hypercholesterolemic and the CaCl(2)-induced normocholesterolemic mouse model of AAA, we investigated the hypothesis that elevation of HDLs inhibits AAA. HDLs elevated before or at the time of AAA induction reduced AAA formation in both models but had no effect on early ruptures.
Rationale: Aneurysm and dissection of the ascending thoracic aorta are the main cardiovascular complications of Marfan syndrome (MFS) resulting in premature death. Studies using mouse models of MFS have shown that activation of transforming growth factor-beta (TGF-β) and the concomitant upregulation of matrix metalloproteinases (MMPs) contribute to aneurysm development. Our previous study showed that doxycycline delayed aneurysm rupture in a mouse model of MFS, Fbn1(mgR/mgR).
View Article and Find Full Text PDF