Purpose: Evaluating deformable image registration (DIR) algorithms is vital for enhancing algorithm performance and gaining clinical acceptance. However, there is a notable lack of dependable DIR benchmark datasets for assessing DIR performance except for lung images. To address this gap, we aim to introduce our comprehensive liver computed tomography (CT) DIR landmark dataset library.
View Article and Find Full Text PDFBackground: Quantification of cardiac motion on pre-treatment CT imaging for stereotactic arrhythmia radiotherapy patients is difficult due to the presence of image artifacts caused by metal leads of implantable cardioverter-defibrillators (ICDs). The CT scanners' onboard metal artifact reduction tool does not sufficiently reduce these artifacts. More advanced artifact reduction techniques require the raw CT projection data and thus are not applicable to already reconstructed CT images.
View Article and Find Full Text PDF