Experiments on disordered alloys suggest that spin glasses can be brought into low-energy states faster by annealing quantum fluctuations than by conventional thermal annealing. Owing to the importance of spin glasses as a paradigmatic computational testbed, reproducing this phenomenon in a programmable system has remained a central challenge in quantum optimization. Here we achieve this goal by realizing quantum-critical spin-glass dynamics on thousands of qubits with a superconducting quantum annealer.
View Article and Find Full Text PDFThe promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution.
View Article and Find Full Text PDFThe work of Berezinskii, Kosterlitz and Thouless in the 1970s revealed exotic phases of matter governed by the topological properties of low-dimensional materials such as thin films of superfluids and superconductors. A hallmark of this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom-typified by the classical XY model-owing to thermal fluctuations. In the two-dimensional Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations.
View Article and Find Full Text PDF