Publications by authors named "Trevor J Simmons"

Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases.

View Article and Find Full Text PDF

High-performance cellulose-halloysite hemostatic nanocomposite fibers (CHNFs) are fabricated using a one-step wet-wet electrospinning process and evaluated for human plasma coagulation by activated partial thromboplastin time. These novel biocompatible CHNFs exhibit 2.4 times faster plasma coagulation time compared with the industry gold standard QuikClot Combat Gauze (QCG).

View Article and Find Full Text PDF

Poly(glycerol sebacate) (PGS) has increasingly become a desirable biomaterial due to its elastic mechanical properties, biodegradability, and biocompatibility. Here, we report microfibrous core-shell mats of polycaprolactone (PCL)-PGS prepared using wet-wet coaxial electrospinning. The anticoagulant heparin was immobilized onto the surface of these electrospun fiber mats, and they were evaluated for their chemical, mechanical, and biological properties.

View Article and Find Full Text PDF

Magnetically responsive heparin-immobilized cellulose nanofiber composites were synthesized by wet-wet electrospinning from a nonvolatile, room-temperature ionic liquid (RTIL), 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]), into an aqueous coagulation bath. Superparamagnetic magnetite (FeO) nanoparticles were incorporated into the fibers to enable the manipulation of both dry and wet nanofiber membranes with an external magnetic field. Three synthetic routes were developed to prepare three distinct types of nanocomposite fibers: cellulose-FeO-heparin monofilament fibers, cellulose-FeO-heparin core-shell fibers with heparin covalently immobilized on the fiber surface, and cellulose -FeO core-shell fibers with heparin physically immobilized on the fiber surface.

View Article and Find Full Text PDF

A functional anticoagulant and anti-bacterial coating for polyethylene (PE) films is described. The stepwise preparation of this nanocomposite surface coating involves O plasma etching of PE film, carbodiimide coupling of cysteamine to the etched PE film, binding of Ag to sulfhydryl groups of cysteamine, and assembly of heparin capped AgNPs on the PE film. The nanocomposite film and its components were characterized by H-nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and field emission-scanning electron microscopy.

View Article and Find Full Text PDF

Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter-and therefore an increased surface area-relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next.

View Article and Find Full Text PDF

In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI(3)), it was possible to form covalent bonds between the Ga(3+) ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy.

View Article and Find Full Text PDF

In this work, films of horizontally aligned single-walled carbon nanotubes were thermally and electrically characterized in order to determine the bolometric performance. An average thermal time constant of τ = 420 μs along with a temperature coefficient of resistance of TCR = -2.94% K(-1) were obtained.

View Article and Find Full Text PDF

Electrospun polymer fibers were prepared containing mixtures of different proportions of ferromagnetic and superparamagnetic nanoparticles. The magnetic properties of these fibers were then explored using a superconducting quantum interference device. Mixed superparamagnetic/ferromagnetic fibers were examined for mesoscale magnetic exchange coupling, which was not observed as theoretically predicted.

View Article and Find Full Text PDF

Electrospinning of nanomaterial composites are gaining increased interest in the fabrication of electronic components and devices. Performance improvement of electrospun components results from the unique properties associated with nanometer-scaled features, high specific surface areas, and light-weight designs. Electrospun nanofiber membrane-containing polymer electrolytes show improved ionic conductivity, electrochemical stability, low interfacial resistance, and improved charge-discharge performance than those prepared from conventional membranes.

View Article and Find Full Text PDF

Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose dissolved in the same IL.

View Article and Find Full Text PDF

We have created stable dispersions of single wall carbon nanotubes (SWNTs) in water by employing a noncovalent functionalization scheme that allows carboxylic acid moieties to be attached to the SWNT surface by a pi-pi stacking interaction. Pyrenecarboxylic acid (PCA) is noncovalently attached to the surface of SWNTs and affords highly uniform and stable aqueous dispersions. This method was developed to provide a noncovalent alternative to the commonly used oxidative acid treatment functionalization of carbon nanotubes.

View Article and Find Full Text PDF

We report novel heparin-cellulose-charcoal composites prepared using room temperature ionic liquids (RTILs) to enhance the biocompatibility and blood compatibility of activated charcoal beads while decreasing the size of their active pores.

View Article and Find Full Text PDF