Publications by authors named "Trevor G Glaros"

Omics-based measurements enable the study of biomolecules in a high-throughput fashion, leading to the characterization and quantification of biological systems. Multi-omics methods aim to incorporate several omics measurements for a more holistic approach, which is crucial for advancing our understanding of the diversity and redundancy of biological systems. Current multi-omics sample preparation methods have achieved proteomics, lipidomics, and metabolomics from individual samples; however, the bioinformatic tools currently available for interpreting data generated from these omics are limited.

View Article and Find Full Text PDF

Although classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type.

View Article and Find Full Text PDF

Field-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest.

View Article and Find Full Text PDF

The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared.

View Article and Find Full Text PDF

There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin.

View Article and Find Full Text PDF

By characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health.

View Article and Find Full Text PDF

Background: The bacterium Burkholderia mallei is the etiological agent of glanders, a highly contagious, often fatal zoonotic infectious disease that is also a biodefense concern. Clinical laboratory assays that analyze blood or other biological fluids are the highest priority because these specimens can be collected with minimal risk to the patient. However, progress in developing sensitive assays for monitoring B.

View Article and Find Full Text PDF

We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow.

View Article and Find Full Text PDF

Increasing clinical observations reveal that persistent low-grade inflammation is associated with the pathogenesis of severe chronic diseases such as atherosclerosis, diabetes, and aging-related neurological diseases. Intriguingly, low levels of circulating Gram-negative bacterial endotoxin lipopolysaccharide (LPS) appear to be one of the key culprits in provoking a non-resolving low-grade inflammation. Adverse life styles, chronic infection, and aging can all contribute to the rise of circulating endotoxin levels and lead to low-grade endotoxemia.

View Article and Find Full Text PDF

Purpose: To establish whether NSC80467, a novel fused naphthquinone imidazolium, has a similar spectrum of activity to the well-characterized "survivin suppressant" YM155 and to extend mechanistic studies for this structural class of agent.

Methods: NSC80467 and YM155 were analyzed in parallel using assays measuring viability, survivin suppression, inhibition of DNA/RNA/protein synthesis and the cellular response to DNA damage.

Results: GI(50) values generated for both compounds in the NCI-60 screen yielded a correlation coefficient of 0.

View Article and Find Full Text PDF

Histone modifications are important epigenetic mechanisms involved in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) assay serves as the primary technique to characterize the genomic locations associated with histone modifications. However, traditional tube-based ChIP assays rely on large numbers of cells as well as laborious and time-consuming procedures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuuvh1s1o5356fpv4malrlpdbs9k8m22k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once