Publications by authors named "Trevor Forsyth"

Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and DO buffer-exchanged HEWL from 0.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities.

View Article and Find Full Text PDF

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function.

View Article and Find Full Text PDF

Naturally occurring plant cellulose, our most abundant renewable resource, consists of fibers of long polymer chains that are tightly packed in parallel arrays in either of two crystal phases collectively referred to as cellulose I. During mercerization, a process that involves treatment with sodium hydroxide, cellulose goes through a conversion to another crystal form called cellulose II, within which every other chain has remarkably changed direction. We designed a neutron diffraction experiment with deuterium labelling in order to understand how this change of cellulose chain direction is possible.

View Article and Find Full Text PDF

Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers.

View Article and Find Full Text PDF

This paper is a report of recommendations for addressing translational challenges in amyloid disease research. They were developed during and following an international online workshop organized by the LINXS Institute of Advanced Neutron and X-Ray Science in March 2021. Key suggestions include improving cross-cultural communication between basic science and clinical research, increasing the influence of scientific societies and journals (vis-à-vis funding agencies and pharmaceutical companies), improving the dissemination of negative results, and strengthening the ethos of science.

View Article and Find Full Text PDF

Biologically active vitamin B-derivative pyridoxal 5'-phosphate (PLP) is an essential cofactor in amino acid metabolic pathways. PLP-dependent enzymes catalyze a multitude of chemical reactions but, how reaction diversity of PLP-dependent enzymes is achieved is still not well understood. Such comprehension requires atomic-level structural studies of PLP-dependent enzymes.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex.

View Article and Find Full Text PDF

The ATP-binding cassette transporter MsbA is a lipid flippase, translocating lipid A, glycolipids, and lipopolysaccharides from the inner to the outer leaflet of the inner membrane of Gram-negative bacteria. It has been used as a model system for time-resolved structural studies as several MsbA structures in different states and reconstitution systems (detergent/nanodiscs/peptidiscs) are available. However, due to the limited resolution of the available structures, detailed structural information on the bound nucleotides has remained elusive.

View Article and Find Full Text PDF

The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme.

View Article and Find Full Text PDF

We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate.

View Article and Find Full Text PDF

Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant.

View Article and Find Full Text PDF

This structural and biophysical study exploited a method of perdeuterating hen egg-white lysozyme based on the expression of insoluble protein in followed by in-column chemical refolding. This allowed detailed comparisons with perdeuterated lysozyme produced in the yeast , as well as with unlabelled lysozyme. Both perdeuterated variants exhibit reduced thermal stability and enzymatic activity in comparison with hydrogenated lysozyme.

View Article and Find Full Text PDF

The co-catabolism of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions.

View Article and Find Full Text PDF

Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in various pathological processes, where they interact with glycans present on the surface of the host cells. These interactions are part of the initial processes of infection of the host and are very important to study at the atomic level. Here, we report the room temperature neutron structures of PLL lectin from Photorhabdus laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand.

View Article and Find Full Text PDF

Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid.

View Article and Find Full Text PDF

Complement Factor H (CFH), with 20 short complement regulator (SCR) domains, regulates the alternative pathway of complement in part through the interaction of its C-terminal SCR-19 and SCR-20 domains with host cell-bound C3b and anionic oligosaccharides. In solution, CFH forms small amounts of oligomers, with one of its self-association sites being in the SCR-16/20 domains. In order to correlate CFH function with dimer formation and the occurrence of rare disease-associated variants in SCR-16/20, we identified the dimerization site in SCR-16/20.

View Article and Find Full Text PDF

Conifer wood is an exceptionally stiff and strong material when its cellulose microfibrils are well aligned. However, it is not well understood how the polymer components cellulose, hemicelluloses and lignin co-operate to resist tensile stress in wood. From X-ray scattering, neutron scattering and spectroscopic data, collected under tension and processed by novel methods, the ordered, disordered and hemicellulose-coated cellulose components comprising each microfibril were shown to stretch together and demonstrated concerted, viscous stress relaxation facilitated by water.

View Article and Find Full Text PDF

The experimental determination of the relative biological effectiveness of thermal neutron factors is fundamental in Boron Neutron Capture Therapy. The present values have been obtained while using mixed beams that consist of both neutrons and photons of various energies. A common weighting factor has been used for both thermal and fast neutron doses, although such an approach has been questioned.

View Article and Find Full Text PDF

Lipoproteins play a central role in the development of atherosclerosis. High and low-density lipoproteins (HDL and LDL), known as 'good' and 'bad' cholesterol, respectively, remove and/or deposit lipids into the artery wall. Hence, insight into lipid exchange processes between lipoproteins and cell membranes is of particular importance in understanding the onset and development of cardiovascular disease.

View Article and Find Full Text PDF

l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host-pathogen interactions.

View Article and Find Full Text PDF

The cold neutron beam at the PF1b line at the Institut Laue-Langevin (ILL), without fast neutrons and a low contribution of gamma rays, is a very suitable facility to measure cell damage following low-energy neutron irradiation. The biological damage associated with the thermal and the boron doses can be obtained in order to evaluate the relative biological effectiveness (RBE) for Boron Neutron Capture Therapy. Three different experiments were carried out on the A375 melanoma cell line: the first one in a hospital LINAC, to obtain the reference radiation data, and the other two at the ILL, in which the damage to cells with and without boron compounds added was measured.

View Article and Find Full Text PDF

Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS).

View Article and Find Full Text PDF