Publications by authors named "Trevor Darby"

The intestinal microbiome has emerged as a potential contributor to the severity of sickle cell disease (SCD). We sought to determine whether SCD mice exhibit intestinal barrier dysfunction, inflammation, and dysbiosis. Using the Townes humanized sickle cell mouse model, we found a 3-fold increase in intestinal permeability as assessed via FITC-dextran (4 kDa) assay in SS (SCD) mice compared to AA (wild type) mice ( = 4,  < 0.

View Article and Find Full Text PDF

Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans.

View Article and Find Full Text PDF

Background & Aims: In colorectal cancer, approximately 95% of patients are refractory to immunotherapy because of low antitumor immune responses. Therefore, there is an exigent need to develop treatments that increase antitumor immune responses and decrease tumor burden to enhance immunotherapy.

Methods: The gut microbiome has been described as a master modulator of immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that genes play a big role in how strong our bones are, but other things we don't understand well also matter.
  • They studied mice to see how the bacteria in their guts affect their bones and discovered that certain gut bacteria can harm bone growth.
  • The research shows that if we learn how to handle these gut bacteria better, it could help humans have stronger bones, but some bacteria might also cause bone loss if not used carefully.
View Article and Find Full Text PDF

The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation.

View Article and Find Full Text PDF

Background & Aims: The intestinal epithelium must be resilient to physiochemical stress to uphold the physiological barrier separating the systemic compartment from the microbial and antigenic components of the gut lumen. Identifying proteins that mediate protection and enhancing their expression is therefore a clear approach to promote intestinal health. We previously reported that oral ingestion of the probiotic Lactobacillus rhamnosus GG not only induced the expression of several recognized cytoprotective factors in the murine colon, but also many genes with no previously described function, including the gene encoding proline-rich acidic protein 1 (PRAP1).

View Article and Find Full Text PDF

Many studies have suggested a role for gut-resident microbes (the "gut microbiome") in modulating host health; however, the mechanisms by which they impact systemic physiology remain largely unknown. In this study, metabolomic and transcriptional profiling of germ-free and conventionalized mouse liver revealed an upregulation of the Nrf2 antioxidant and xenobiotic response in microbiome-replete animals. Using a Drosophila-based screening assay, we identified members of the genus Lactobacillus capable of stimulating Nrf2.

View Article and Find Full Text PDF

Background & Aims: A Western-style diet, which is high in fat and sugar, can cause significant dyslipidemia and nonalcoholic fatty liver disease; the diet has an especially strong effect in women, regardless of total calorie intake. Dietary supplementation with beneficial microbes might reduce the detrimental effects of a Western-style diet. We assessed the effects of Lactococcus lactis subspecies (subsp) cremoris on weight gain, liver fat, serum cholesterol, and insulin resistance in female mice on a high-fat, high-carbohydrate diet.

View Article and Find Full Text PDF

Background & Aims: Identifying the functional elements that mediate efficient gut epithelial growth and homeostasis is essential for understanding intestinal health and disease. Many of these processes involve the Lactobacillus-induced generation of reactive oxygen species by NADPH oxidase (Nox1). However, the downstream signaling pathways that respond to Nox1-generated reactive oxygen species and mediate these events have not been described.

View Article and Find Full Text PDF

The use of beneficial bacteria to promote health is widely practiced. However, experimental evidence corroborating the efficacy of bacteria promoted with such claims remains limited. We address this gap by identifying a beneficial bacterium that protects against tissue damage and injury-induced inflammation in the gut.

View Article and Find Full Text PDF

Intestinal homeostasis is regulated in-part by reactive oxygen species (ROS) that are generated in the colonic mucosa following contact with certain lactobacilli. Mechanistically, ROS can modulate protein function through the oxidation of cysteine residues within proteins. Recent advances in cysteine labeling by the Isotope Coded Affinity Tags (ICATs) technique has facilitated the identification of cysteine thiol modifications in response to stimuli.

View Article and Find Full Text PDF

Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) results from aberrant immune stimulation against a dysbiotic mucosal but relatively preserved luminal microbiota and preferentially affects males in early onset disease. However, factors contributing to sex-specific risk and the pattern of dysbiosis are largely unexplored. Core 1 β3GalT-specific molecular chaperone (Cosmc), which encodes an X-linked chaperone important for glycocalyx formation, was recently identified as an IBD risk factor by genome-wide association study.

View Article and Find Full Text PDF

A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM.

View Article and Find Full Text PDF

An optimal gut microbiota influences many beneficial processes in the metazoan host. However, the molecular mechanisms that mediate and function in symbiont-induced host responses have not yet been fully characterized. Here, we report that cellular ROS enzymatically generated in response to contact with lactobacilli in both mice and Drosophila has salutary effects against exogenous insults to the intestinal epithelium via the activation of Nrf2 responsive cytoprotective genes.

View Article and Find Full Text PDF

Background: The aim of this study was to examine the effect of colitis and anti-inflammatory therapies on the healing of colonic anastomoses in mice.

Methods: Female C57BL/6 mice were randomized into eight groups; four groups receiving plain tap-water and four groups receiving dextran sulfate sodium. Intra-peritoneal treatment was given therapeutically for 14 days with placebo, prednisolone, azathioprine, or infliximab (IFX).

View Article and Find Full Text PDF

Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1β, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy.

View Article and Find Full Text PDF

There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response; however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with LPS, suggesting a role in inflammation.

View Article and Find Full Text PDF

Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis.

View Article and Find Full Text PDF

Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows.

View Article and Find Full Text PDF

Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L.

View Article and Find Full Text PDF