Curr Protoc Pharmacol
September 2018
Ion channels play crucial roles in physiology by modulation of cellular functions that include electrical excitability, secretion, cell migration, and gene transcription. They are an important target class for drug discovery and have historically been targeted using small molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative forms of biologics.
View Article and Find Full Text PDFThe development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies.
View Article and Find Full Text PDFThe expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts.
View Article and Find Full Text PDFThe development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules.
View Article and Find Full Text PDFImmunization of mice or rats with a "non-self" protein is a commonly used method to obtain monoclonal antibodies, and relies on the immune system's ability to recognize the immunogen as foreign. Immunization of an antigen with 100% identity to the endogenous protein, however, will not elicit a robust immune response. To develop antibodies to mouse proteins, we focused on the potential for breaking such immune tolerance by genetically fusing two independent T-cell epitope-containing sequences (from tetanus toxin (TT) and diphtheria toxin fragment A (DTA)) to a mouse protein, mouse ST2 (mST2).
View Article and Find Full Text PDFIon channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics.
View Article and Find Full Text PDF