Publications by authors named "Trevor A Snyder"

Device-related thrombosis and thromboembolic complications remain a major clinical concern and often impact patient morbidity and mortality. Thus, improved preclinical thrombogenicity assessment methods that better predict clinical outcomes and enhance patient safety are needed. However, there are several challenges and limitations associated with developing and performing preclinical thrombogenicity assessments on the bench and in animals (e.

View Article and Find Full Text PDF

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles.

View Article and Find Full Text PDF

Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma.

View Article and Find Full Text PDF

Introduction: Neutrophils display an array of behaviors ranging from rolling and migration to phagocytosis and granule secretion. Several of these behaviors are modulated by the local shear conditions. In the normal circulation, neutrophils experience shear rates from approximately 10-2,000 s.

View Article and Find Full Text PDF

Ovines are a common animal model for the study of cardiovascular devices, where consideration of blood biocompatibility is an essential design criterion. In the ovine model, tools to assess blood biocompatibility are limited and continued investigation to identify and apply additional assays is merited. Toward this end, the thrombelastograph, clinically utilized to assess hemostasis, was used to characterize normal ovine parameters.

View Article and Find Full Text PDF

Gastrointestinal bleeding occurs in 20-30% of patients receiving ventricular assist devices (VADs) due, in part, to acquired von Willebrand syndrome. We examined factors to optimize a benchtop method to quantify changes in von Willebrand Factor (VWF) multimer distribution and function in VADs, then applied them to evaluate commercially available devices. Human plasma was circulated through flow loops with VADs.

View Article and Find Full Text PDF

Due to the critical roles that platelets play in thrombosis during many biological and pathological events, altered platelet function may be a key contributor to altered hemostasis, leading to both thrombotic and hemorrhagic complications. Platelet adhesion at arterial shear rates occurs through binding to von Willebrand Factor via the glycoprotein (GP) GPIb receptor. GPIb binding can induce platelet activation distinguishable by P-selectin (CD62P) surface expression and αβ activation, resulting in platelet aggregation and formation of the primary hemostatic plug to stop bleeding.

View Article and Find Full Text PDF

The design of blood pumps for use in ventricular assist devices, which provide life-saving circulatory support in patients with heart failure, require remarkable precision and attention to detail to replicate the functionality of the native heart. The United States Food and Drug Administration (FDA) initiated a Critical Path Initiative to standardize and facilitate the use of computational fluid dynamics in the study and development of these devices. As a part of the study, a simplified centrifugal blood pump model generated by computer-aided design was released to universities and laboratories nationwide.

View Article and Find Full Text PDF

Left ventricular assist devices (LVADs) are blood pumps that augment the function of the failing heart to improve perfusion, resulting in improved survival. For LVADs to effectively unload the left ventricle, the inflow cannula (IC) should be unobstructed and ideally aligned with the heart's mitral valve (MV). We examined IC orientation deviation from a hypothesized conventional angle (45° right-posterior) and the approximate angle for direct IC-MV alignment in many patients.

View Article and Find Full Text PDF

Platelet adhesion to the vessel wall during vascular injury is mediated by platelet glycoproteins binding to their respective ligands on the vascular wall. In this study we investigated the roles that ligand patch spacing and size play in regulating platelet interactions with fibrinogen under hemodynamic flow conditions. To regulate the size and distance between patches of fibrinogen we developed a photolithography-based technique to fabricate patterns of proteins surrounded by a protein-repellant layer of poly(ethylene glycol).

View Article and Find Full Text PDF

A patient supported by a left ventricular assist device (LVAD) presented with an abdominal tumor requiring consolidative radiation therapy. To assess the effects of radiation therapy on the operation of the ventricular assist device (VAD) system and assure that the treatment would be safe for the patient with regard to the operation of the VAD system, sample equipment was irradiated and then tested for functionality. Changes in the mechanical properties of components of the percutaneous lead were measured.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) affects nearly 150,000 patients per year in the US, and is associated with high mortality ( approximately 40%) and suboptimal options for patient care. Mechanical ventilation and extracorporeal membrane oxygenation are limited to short-term use due to ventilator-induced lung injury and poor biocompatibility, respectively. In this report, we describe the development of a biohybrid lung prototype, employing a rotating endothelialized microporous hollow fiber (MHF) bundle to improve blood biocompatibility while MHF mixing could contribute to gas transfer efficiency.

View Article and Find Full Text PDF

Our objective was to develop a surface modification strategy for a titanium alloy (TiAl6V4) to provide thromboresistance for surfaces in rigorous blood-contacting cardiovascular applications, such as that found in ventricular assist devices. We hypothesized that this could be accomplished by the covalent attachment of a phospholipid polymer, poly(2-methacryloyloxyethylphosphorylcholine (MPC)-co-methacryl acid) (PMA). TiAl6V4 was H2O plasma treated by radio frequency glow discharge, silanated with 3-aminopropyltriethoxysilane (APS), and ammonia plasma treated to increase surface reactivity.

View Article and Find Full Text PDF

The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients.

View Article and Find Full Text PDF

Ovines are a common animal model for preclinical evaluation of cardiovascular devices including heart valves, endovascular grafts, and ventricular assist devices. Biocompatibility is essential to the success of these devices; however, tools to assess biocompatibility in ovines are limited. To address this need, antibodies that bind to activated human and bovine platelets and annexin V protein were evaluated for potential cross-reactivity to activated ovine platelets.

View Article and Find Full Text PDF

Infection and thromboembolism remain significant complications associated with ventricular assist device (VAD) support, including the newer rotary VADs, limiting wider adoption of this promising technology. These complications persist in spite of extensive preclinical testing in large animal models. The amount of biocompatibility information collected during preclinical trials is limited due to a lack of available assays.

View Article and Find Full Text PDF

Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor.

View Article and Find Full Text PDF

Thromboembolism and bleeding remain significant complications of ventricular assist device (VAD) support. Increasing the amount of biocompatibility data collected during preclinical studies can provide additional criteria to evaluate device refinements, while design changes may be implemented before entering clinical use. Twenty bovines were implanted with the EVAHEART centrifugal VAD for durations from 30 to 196 days.

View Article and Find Full Text PDF

We investigated the applicability of measuring the viscoelasticity of bovine, ovine, and porcine whole blood for the evaluation of sublethal damage to red blood cells (RBCs). An increase in blood viscosity and elasticity without changes in hematocrit and plasma viscosity would signify a decrease in RBC deformability. Blood viscoelasticity was assessed using a Vilastic Scientific viscoelastometer.

View Article and Find Full Text PDF

To treat acute lung failure, an intravenous membrane gas exchange device, the Hattler Catheter, is currently under development. Several methods were employed to evaluate the biocompatibility of the device during preclinical testing in bovines, and potential coatings for the fibers comprising the device were screened for their effectiveness in reducing thrombus deposition in vitro. Flow cytometric analysis demonstrated that the device had the capacity to activate platelets as evidenced by significant increases in circulating platelet microaggregates and activated platelets.

View Article and Find Full Text PDF

The very limited options available to treat ventricular failure in children with congenital and acquired heart diseases have motivated the development of a pediatric ventricular assist device at the University of Pittsburgh (UoP) and University of Pittsburgh Medical Center (UPMC). Our effort involves a consortium consisting of UoP, Children's Hospital of Pittsburgh (CHP), Carnegie Mellon University, World Heart Corporation, and LaunchPoint Technologies, Inc. The overall aim of our program is to develop a highly reliable, biocompatible ventricular assist device (VAD) for chronic support (6 months) of the unique and high-risk population of children between 3 and 15 kg (patients from birth to 2 years of age).

View Article and Find Full Text PDF

The very limited options available to treat ventricular failure in patients with congenital and acquired heart diseases have motivated the development of a pediatric ventricular assist device (VAD). Our effort involves a consortium consisting of the University of Pittsburgh, Carnegie Mellon University, Children's Hospital of Pittsburgh, World Heart Corporation, and LaunchPoint Technologies, LLC. The overall aim of our program is to develop a highly reliable, biocompatible VAD for chronic support (6 months) of the unique and high-risk population of children between 3 kg and 15 kg (patients from birth to 2 years of age).

View Article and Find Full Text PDF

We investigated a miniature magnetically levitated centrifugal blood pump intended to deliver 0.3-1.5 l/min of support to neonates and infants.

View Article and Find Full Text PDF

Rational design of blood-wetted devices requires a careful consideration of shear-induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear-exposure history by conventional means.

View Article and Find Full Text PDF