Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ∼225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.
View Article and Find Full Text PDFWe present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit by cooling micrometer-sized droplets (microdroplets) evaporatively at 10-10 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10-10 K/s.
View Article and Find Full Text PDFThe structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
November 2012
An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 µl min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2012
Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism.
View Article and Find Full Text PDF