Publications by authors named "Trevisiol A"

Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts.

View Article and Find Full Text PDF

The oral and gastrointestinal mucosae represent the main targets of the toxic effect of chemo and/or radiotherapy administered during the conditioning regimen before hematopoietic stem cell transplant (HSCT). These harmful consequences and the immunological complications that may occur after the transplant (such as Graft versus Host Disease, GvHD) are responsible for the clinical symptoms associated with mucositis during the aplasia phase, like pain, nausea, vomiting, and diarrhea. These toxicities could play a critical role in the oral and gastrointestinal microbiomes during the post-transplant phase, and the degree of microbial dysbiosis and dysregulation among different bacterial species could also be crucial in intestinal mucosa homeostasis, altering the host's innate and adaptive immune responses and favoring abnormal immune responses responsible for the occurrence of GvHD.

View Article and Find Full Text PDF

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation.

View Article and Find Full Text PDF

Direct neuronal reprogramming, the process whereby a terminally differentiated cell is converted into an induced neuron without traversing a pluripotent state, has tremendous therapeutic potential for a host of neurodegenerative diseases. While there is strong evidence for astrocyte-to-neuron conversion studies in the adult brain are less supportive or controversial. Here, we set out to enhance the efficacy of neuronal conversion of adult astrocytes by optimizing the neurogenic capacity of a driver transcription factor encoded by the proneural gene Ascl1.

View Article and Find Full Text PDF

In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia.

View Article and Find Full Text PDF
Article Synopsis
  • Myelinating oligodendrocytes not only speed up action potential propagation along axons but also provide metabolic support to these axons and influence myelination based on neural activity.
  • This study investigates how myelin affects auditory processing and speech understanding by comparing mice with varying levels of myelination through recordings and behavior tests.
  • The findings reveal that both poorly myelinated and well myelinated mice exhibit complex deficits in auditory response and processing, suggesting that myelination and metabolic support from oligodendrocytes are crucial for effective information processing in the auditory cortex.
View Article and Find Full Text PDF

Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5'-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC 40 µM; estimated endogenous cAMP concentration 13 µM).

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS.

View Article and Find Full Text PDF

Background: Van der Woude syndrome (VWS), an autosomal dominant condition associated with lower lip pits and/or cleft palate, is caused by mutations in the interferon regulatory factor 6 gene (lRF6 gene). The genetic alterations identified to date that contribute to expression of the syndrome are chiefly mutations located on chromosome 1 (the largest of our chromosomes), mutations at p36 that codifies the gene GRHL (grainy-head transcriptor factor) and mutations involving IRF6 (interferon regulatory factor). With frequency ranging from 1:35,000 to 1:100,000, depending on ethnicity, gender, and socio-economic status, the syndrome accounts for about 2% of orofacial clefts.

View Article and Find Full Text PDF

In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves.

View Article and Find Full Text PDF

Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function.

View Article and Find Full Text PDF

The discovery in mammals that axons are metabolically supported by myelinating glial cells explains why neurons can extend meters in length. In this issue, Volkenhoff et al. (2015) show that, in Drosophila, the transfer of lactate from the glial to the neuronal compartment is conserved in evolution, independent of body size.

View Article and Find Full Text PDF