This study aims to analyze the mechanisms through which the coronavirus disease (COVID-19) pandemic impacts on well-being at work and on productivity. The secondary objective is to identify stress management strategies for the work environment during the pandemic. This is an integrative review.
View Article and Find Full Text PDFSpermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping.
View Article and Find Full Text PDFRat hypodactyly (hd) mutation is characterized by abnormal spermatogenesis and sperm decapitation, limb malformation (missing digits II and III) and growth retardation. We have previously reported centrobin (centrosome BRCA2-interacting protein) truncation at the C-terminus in the hd mutant. Here, we report data from a transgenic rescue experiment carried out to determine a role of centrobin in pathogenesis of hd.
View Article and Find Full Text PDFSpermatids generate diverse and unusual actin and microtubule populations during spermiogenesis to fulfill mechanical and cargo transport functions assisted by motor and non-motor proteins. Disruption of cargo transport may lead to teratozoospermia and consequent male infertility. How motor and non-motor proteins utilize the cytoskeleton to transport cargos during sperm development is not clear.
View Article and Find Full Text PDFWe describe the localization of the golgin GMAP210 and the intraflagellar protein IFT88 in the Golgi of spermatids and the participation of these two proteins in the development of the acrosome-acroplaxome complex, the head-tail coupling apparatus (HTCA) and the spermatid tail. Immunocytochemical experiments show that GMAP210 predominates in the cis-Golgi, whereas IFT88 prevails in the trans-Golgi network. Both proteins colocalize in proacrosomal vesicles, along acrosome membranes, the HTCA and the developing tail.
View Article and Find Full Text PDFThe hypodactylous (hd) locus impairs limb development and spermatogenesis, leading to male infertility in rats. We show that the hd mutation is caused by an insertion of an endogenous retrovirus into intron 10 of the Cntrob gene. The retroviral insertion in hd mutant rats disrupts the normal splicing of Cntrob transcripts and results in the expression of a truncated protein.
View Article and Find Full Text PDFWe report the cDNA cloning of rat testis Rnf19a, a ubiquitin protein ligase, and show 98% and 93% protein sequence identity of testicular mouse and human Rnf19a, respectively. Rnf19a interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome. During spermatid development, Rnf19a and Psmc3 are initially found in Golgi-derived proacrosomal vesicles.
View Article and Find Full Text PDFWe report that full-length and truncated transcripts of Fyn tyrosine protein kinase are expressed during testicular development. Truncated Fyn (tr-Fyn) transcripts encode a 24 kDa protein with a N-terminal (NT) domain, a complete Src homology (SH) 3 domain and an incomplete SH2 domain. The kinase domain is missing in tr-Fyn.
View Article and Find Full Text PDFWe report the association of testicular Fer, a non-receptor tyrosine kinase, with acrosome development and remodeling of the acrosome-associated acroplaxome plate during spermatid head shaping. A single gene expresses two forms of Fer tyrosine kinases in testis: a somatic form (FerS) and a truncated testis-type form (FerT). FerT transcript variants are seen in spermatocytes and spermatids.
View Article and Find Full Text PDFOuter dense fibers are a major constituent of the sperm tail and outer dense fiber 2 (ODF2) protein is one of their major components. ODF2 shares partial homology with cenexin 1 and cenexin 2, regarded as centriolar proteins. We show that ODF2 and cenexin 2 transcripts are the product of differential splicing of a single gene, designated Cenexin/ODF2 and that cenexin 1 is an incomplete clone of ODF2.
View Article and Find Full Text PDFThe shaping of the mammalian sperm involves the elongation and condensation of the spermatid nucleus, the development of the acrosome, and the transient appearance of the microtubular manchette. F-actin-containing ectoplasmic hoops of Sertoli cells embrace the upper third of the spermatid head during elongation. During acrosomal biogenesis, proacrosomal vesicles derived from the Golgi apparatus, dock and fuse along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate.
View Article and Find Full Text PDFWe have previously reported that Sertoli cell geometric changes induced by a Fas (CD95) agonist or by restricting Sertoli cell spreading can trigger spermatogenic cell detachment from Sertoli cell surfaces and initiate a programmed cell death sequence. Here, we have focused on ADAM proteins, tetraspanins CD9 and CD81, and the integrin beta1 subunit, which is co-expressed in testis with integrin alpha3 and integrin alpha6 subunits, to understand how these molecules may stabilize spermatogenic cell attachment to Sertoli cell surfaces. Like ADAM proteins, integrin beta1, alpha3, and alpha6 subunits, and CD9 and CD81 transcripts are expressed in the fetal testis and throughout testicular maturation, as well as, in Sertoli-spermatogenic cell co-cultures.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
June 2005
New insights have emerged about the expression, during testicular cord formation, of the ADAM (a disintegrin and metalloprotease) domain family of proteins that combines both cell surface adhesion and proteolytic activity; this family includes integrins alpha3beta1 and alpha6beta1 and tetraspanins, a distinct family of proteins containing four transmembrane domains, a small and a large extracellular loop, and short cytoplasmic tails. ADAM3 (cyritestin), ADAM5, ADAM6, and ADAM15 are expressed in fetal rat testes. In contrast, the expression of the ADAM1/ADAM2 pair (fertilin alpha/fertilin beta, respectively) is not detected in fetal testis.
View Article and Find Full Text PDFNucleolar organization by autosomal bivalents occurs during male meiotic prophase in mammalian species. During late leptotene-early zygotene stages, several autosomal bivalents are engaged in ribosomal RNA synthesis. At pachytene stage, nucleolar masses detach from the sites of primary autosomal origin, relocate close to the XY chromosomal pair, and nucleolar components become segregated.
View Article and Find Full Text PDFArch Histol Cytol
November 2004
Programmed cell death or apoptosis was analyzed in rat Sertoli-spermatogonial cell cocultures prepared from 2-9 day old rats using time-lapse video microscopy, a cell viability fluorescence microscopy assay, immunocytochemical markers, and cell-permeable caspase inhibitory peptides with reversible and irreversible effects. We show that apoptosis can initially affect a single member of a spermatogonial cell cohort and that single non-viable spermatogonial cells can remain conjoined to viable spermatogonial cells. The integrity of the cytoskeletal F-actin network and the presence on Bcl-2 immunoreactivity are valuable markers of spermatogonial cell viability.
View Article and Find Full Text PDFArch Histol Cytol
November 2004
A combination of exogenous contractile forces generated by a stack of F-actin-containing hoops embracing the apical region of the elongating spermatid nucleus and an endogenous modulating mechanism dependent on the spermatid-containing acrosome-acroplaxome-manchette complex may play a cooperative role in the shaping of the spermatid head. In addition, the manchette is a key element in the transport of vesicles and macromolecules to the centrosome and developing spermatid tails as well as in nucleocytoplasmic transport. The proposed model of spermatid head shaping is based on: 1) currently known structural and molecular components of the F-actin hoops, the main cytoskeletal element of the Sertoli cell ectoplasmic specializations; 2) the molecular features of acrosome biogenesis; 3) the assembly of a subacrosomal cytoskeletal plate called the acroplaxome; and 4) the spatial relationship of the acrosome-acroplaxome complex with the manchette, a transient microtubular/actin-containing structure.
View Article and Find Full Text PDFProtein and vesicle cargos can be mobilized during spermiogenesis by intramanchette transport utilizing microtubule-based protein motors (kinesins and dyneins). However, actin-based unconventional myosin motors may also play a significant role in targeting vesicle cargos to subcellular compartments during sperm development. Here we report that myosin Va, an actin-based motor protein, is a component of the acroplaxome of rodent spermatids.
View Article and Find Full Text PDFSpecification of primordial germ cells (PGCs) in the proximal epiblast enables about 45 founder PGCs clustered at the base of the allantoic bud to enter the embryo by active cell movement. Specification of the PGC lineage depends on paracrine signals derived from the somatic cell neighbors in the extraembryonic ectoderm. Secretory bone morphogenetic proteins (BMP) 4, BMP8b, and BMP2 and components of the Smad signaling pathway participate in the specification of PGCs.
View Article and Find Full Text PDFAcrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome.
View Article and Find Full Text PDFNuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope.
View Article and Find Full Text PDFImmediately after birth, primordial germinal cell-derived prespermatogonia (PSG), located in the center of the testicular cords, migrate between adjacent Sertoli cells to establish contact with the cord basal lamina. PSG migration suggests continued assembly and disassembly of cell-cell contacts by a molecular mechanism that may involve integrins and their ligands, the disintegrin domain of spermatogenic cell-specific plasma membrane proteins called ADAMs. We have analyzed the temporal gene expression of selected ADAMs in intact fetal, early postnatal, and pubertal rat testis and Sertoli-spermatogenic cell cocultures by reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunocytochemistry.
View Article and Find Full Text PDFIt has been shown that mature oocytes injected with nuclei from round spermatids collected from mouse testis can generate normal offspring and that round spermatids can develop in vitro. An undetermined issue is whether spermatids developed in vitro are capable of generating fertile offspring by nuclear injection into oocytes. Herein, we report the production of normal and fertile offspring by nuclear injection using haploid spermatid donors derived from mouse primary spermatocyte precursors cocultured with Sertoli cells.
View Article and Find Full Text PDFRan, a Ras-related GTPase, is required for transporting proteins in and out of the nucleus during interphase and for regulating the assembly of microtubules. cDNA cloning shows that rat testis, like mouse testis, expresses both somatic and testis-specific forms of Ran-GTPase. The presence of a homologous testis-specific form of Ran-GTPase in rodents implies that the Ran-GTPase pathway plays a significant role during sperm development.
View Article and Find Full Text PDFMolecular aspects of spermiogenesis can be studied using mouse mutants and spermatids developed in vitro. The azh/azh mutant is an attractive model system because structural abnormalities in the sperm head and the ectopic position of the manchette are associated with tail bending and looping. Spermatids, developing an axoneme in vitro and capable of cell motility, offer the possibility of the dynamic analysis of tail development.
View Article and Find Full Text PDF