We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.
View Article and Find Full Text PDFThe first proof-of-concept demonstrations are presented for a broadband photonic-assisted analog-to-digital converter (ADC) based on spatial spectral holography (SSH). The SSH-ADC acts as a frequency-domain stretch processor converting high bandwidth input signals to low bandwidth output signals, allowing the system to take advantage of high performance, low bandwidth electronic ADCs. Demonstrations with 50 MHz effective bandwidth are shown to highlight basic performance with approximately 5 effective bits of vertical resolution.
View Article and Find Full Text PDF