Publications by authors named "Trent Northen"

Alga-dominated geothermal spring communities in Yellowstone National Park (YNP), USA, have been the focus of many studies, however, relatively little is known about the composition and community interactions which underpin these ecosystems. Our goal was to determine, in three neighboring yet distinct environments in Lemonade Creek, YNP, how cells cope with abiotic stressors over the diurnal cycle. All three environments are colonized by two photosynthetic lineages, and , both of which are extremophilic Cyanidiophyceae red algae.

View Article and Find Full Text PDF

The terrestrial green alga is an emerging model species with potential applications including production of triacylglycerol or astaxanthin. How interacts with the diverse substrates during trophic transitions is unknown. To characterize its substrate utilization and secretion dynamics, we cultivated the alga in a soil-based defined medium in transition between conditions with and without glucose supplementation.

View Article and Find Full Text PDF

Chemical cues mediate interactions between marine phytoplankton and bacteria, underpinning ecosystem-scale processes including nutrient cycling and carbon fixation. Phage infection alters host metabolism, stimulating the release of chemical cues from intact plankton, but how these dynamics impact ecology and biogeochemistry is poorly understood. Here we determine the impact of phage infection on dissolved metabolite pools from marine cyanobacteria and the subsequent chemotactic response of heterotrophic bacteria using time-resolved metabolomics and microfluidics.

View Article and Find Full Text PDF

Although primarily studied in relation to photorespiration, serine metabolism in chloroplasts may play a key role in plant CO fertilization responses by linking CO assimilation with growth. Here, we show that the phosphorylated serine pathway is part of a 'photosynthetic C pathway' and demonstrate its high activity in foliage of a C tree where it rapidly integrates photosynthesis and C metabolism contributing to new biomass via methyl transfer reactions, imparting a large natural C-depleted signature. Using CO-labelling, we show that leaf serine, the S-methyl group of leaf methionine, pectin methyl esters, and the associated methanol released during cell wall expansion during growth, are directly produced from photosynthetically-linked C metabolism, within minutes of light exposure.

View Article and Find Full Text PDF

Horizontal gene transfer (HGT) is a major process by which genes are transferred between microbes in the rhizosphere. However, examining HGT remains challenging due to the complexity of mimicking conditions within the rhizosphere. Fabricated ecosystems (EcoFABs) have been used to investigate several complex processes in plant-associated environments.

View Article and Find Full Text PDF

Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research.

View Article and Find Full Text PDF

Introduction: Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants.

View Article and Find Full Text PDF

Background: Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue.

View Article and Find Full Text PDF

Third-harmonic generation microscopy is a powerful label-free nonlinear imaging technique, providing essential information about structural characteristics of cells and tissues without requiring external labelling agents. In this work, we integrated a recently developed compact adaptive optics module into a third-harmonic generation microscope, to measure and correct for optical aberrations in complex tissues. Taking advantage of the high sensitivity of the third-harmonic generation process to material interfaces and thin membranes, along with the 1,300-nm excitation wavelength used here, our adaptive optical third-harmonic generation microscope enabled high-resolution in vivo imaging within highly scattering biological model systems.

View Article and Find Full Text PDF

Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how plants like switchgrass release metabolites into the rhizosphere, influencing microbial communities, especially under environmental stress conditions like nutrient or moisture limitations.
  • The research utilized 16S rRNA sequencing and metabolomics to assess changes in microbial composition and rhizosphere chemistry across different nutrient availability scenarios.
  • Findings showed that nitrogen limitation increased specific metabolites linked to certain bacteria, while nitrogen-rich conditions promoted different compounds and microbial growth, with serotonin identified as a key metabolite influencing root development and microbial interactions.
View Article and Find Full Text PDF

Flatbed scanners are commonly used for root analysis, but typical manual segmentation methods are time-consuming and prone to errors, especially in large-scale, multi-plant studies. Furthermore, the complex nature of root structures combined with noisy backgrounds in images complicates automated analysis. Addressing these challenges, this article introduces RhizoNet, a deep learning-based workflow to semantically segment plant root scans.

View Article and Find Full Text PDF

Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding plant metabolites across the plant kingdom is challenging due to their vast diversity.
  • Researchers created the plantMASST reference database with data from 19,075 plant extracts, covering 246 botanical families, 1,469 genera, and 2,793 species.
  • This database enhances research on plant molecules, supporting drug discovery, biosynthesis, taxonomy, and ecology related to herbivore interactions.*
View Article and Find Full Text PDF

Third-harmonic generation microscopy is a powerful label-free nonlinear imaging technique, providing essential information about structural characteristics of cells and tissues without requiring external labelling agents. In this work, we integrated a recently developed compact adaptive optics module into a third-harmonic generation microscope, to measure and correct for optical aberrations in complex tissues. Taking advantage of the high sensitivity of the third-harmonic generation process to material interfaces and thin membranes, along with the 1,300-nm excitation wavelength used here, our adaptive optical third-harmonic generation microscope enabled high-resolution in vivo imaging within highly scattering biological model systems.

View Article and Find Full Text PDF

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis.

View Article and Find Full Text PDF

Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil.

View Article and Find Full Text PDF

Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P.

View Article and Find Full Text PDF

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of β-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze β-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6).

View Article and Find Full Text PDF
Article Synopsis
  • Microbial competition within plant tissues influences how pathogens like the Gram-negative bacterium causing Pierce's disease (PD) in grapevines perform, with various virulence factors being secreted to enhance pathogenicity.
  • This study utilizes metabolomics, specifically liquid chromatography-mass spectrometry (LC-MS), to analyze metabolites produced in interactions between the pathogen and an endophyte, revealing 121 metabolites linked to host adaptation and virulence.
  • Key findings indicate that the interaction alters amino acid ratios and downregulates compounds related to plant metabolism, suggesting that the endophyte helps suppress disease by modifying the pathogen's exometabolome and impacting plant immunity.
View Article and Find Full Text PDF

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood.

View Article and Find Full Text PDF

Understanding plant-microbe interactions requires examination of root exudation under nutrient stress using standardized and reproducible experimental systems. We grew hydroponically in fabricated ecosystem devices (EcoFAB 2.0) under three inorganic nitrogen forms (nitrate, ammonium, and ammonium nitrate), followed by nitrogen starvation.

View Article and Find Full Text PDF

Plants produce a diverse range of specialized metabolites that play pivotal roles in mediating environmental interactions and stress adaptation. These unique chemical compounds also hold significant agricultural, medicinal, and industrial values. Despite the expanding knowledge of their functions in plant stress interactions, understanding the intricate biosynthetic pathways of these natural products remains challenging due to gene and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with broad substrate specificity.

View Article and Find Full Text PDF

Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontomva2bg6v4a7vn2odjk3i7k9iocqd0a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once