Publications by authors named "Trent Munro"

Can drug and vaccine regulatory agencies leverage their experience during the coronavirus disease 2019 (COVID-19) pandemic to advance from reactive regulation to adaptive regulation and beyond to anticipatory regulation to prevent or curb future pandemics?

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities.

View Article and Find Full Text PDF

Objectives: Biosimilar market launch delays are likely costing healthcare systems billions of dollars and preventing patients accessing affordable biologic therapies sooner. Many claim these delays are mostly caused by originator biologics' large patent portfolios asserted during litigation against biosimilar developers, particularly that the manufacturing patents filed after the originator is approved is an important driver of these delays. Our objective was to investigate the accuracy of these claims.

View Article and Find Full Text PDF

Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions.

View Article and Find Full Text PDF

Background: We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years.

Methods: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.

View Article and Find Full Text PDF

The success of mRNA vaccines has been realised, in part, by advances in manufacturing that enabled billions of doses to be produced at sufficient quality and safety. However, mRNA vaccines must be rigorously analysed to measure their integrity and detect contaminants that reduce their effectiveness and induce side-effects. Currently, mRNA vaccines and therapies are analysed using a range of time-consuming and costly methods.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines.

Methods: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain.

View Article and Find Full Text PDF

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice.

View Article and Find Full Text PDF

The reliable and cost-efficient manufacturing of monoclonal antibodies (mAbs) is essential to fulfil their ever-growing demand. Cell death in bioreactors reduces productivity and product quality, and is largely attributed to apoptosis. In perfusion bioreactors, this leads to the necessity of a bleed stream, which negatively affects the overall process economy.

View Article and Find Full Text PDF

Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are the primary platform for the production of biopharmaceuticals. To increase yields, many CHO cell lines have been genetically engineered to resist cell death. However, the kinetics that governs cell fate in bioreactors are confounded by many variables associated with batch processes.

View Article and Find Full Text PDF

The human genome expresses vast numbers of long noncoding RNAs (lncRNA) that fulfil diverse roles in gene regulation, cell biology, development, and human disease. These roles are often mediated by sequence motifs and secondary structures bound by proteins and can regulate epigenetic, transcriptional, and translational pathways. These functional domains can be further optimised and engineered into RNA devices that are widely used in synthetic biology.

View Article and Find Full Text PDF

Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history.

View Article and Find Full Text PDF

Optimal cytoreduction for ovarian cancer is often challenging because of aggressive tumor biology and advanced stage. It is a critical issue since the extent of residual disease after surgery is the key predictor of ovarian cancer patient survival. For a limited number of cancers, fluorescence-guided surgery has emerged as an effective aid for tumor delineation and effective cytoreduction.

View Article and Find Full Text PDF

Background: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]).

Methods: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing an effective SARS-CoV-2 vaccine using a prefusion-stabilized spike protein, Sclamp, combined with the adjuvant MF59 'MF59C.1'.
  • Researchers produced and screened a panel of recombinant Sclamp proteins, assessing their structure and effectiveness through various animal studies.
  • The results showed that the Sclamp vaccine generates strong immune responses, effectively reduces viral loads, and protects against lung disease in animal models, while being suitable for large-scale manufacturing.
View Article and Find Full Text PDF

The fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold, which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyperstable monobody derivative with diagnostic and therapeutic potential. Prestabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain toward biological activity.

View Article and Find Full Text PDF

Vaccine solutions rarely reach the public until after an outbreak abates; an Ebola vaccine was approved 5 years after peak outbreak and SARS, MERS, and Zika vaccines are still in clinical development. Despite massive leaps forward in rapid science, other regulatory bottlenecks are hamstringing the global effort for pandemic vaccines.

View Article and Find Full Text PDF

Background: The monoclonal antibody m102.4 is a potent, fully human antibody that neutralises Hendra and Nipah viruses in vitro and in vivo. We aimed to investigate the safety, tolerability, pharmacokinetics, and immunogenicity of m102.

View Article and Find Full Text PDF

The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development.

View Article and Find Full Text PDF

Generating a highly productive cell line is resource intensive and typically involves long timelines because of the need to screen large numbers of candidates in protein production studies. This has led to miniaturization and automation strategies to allow for reductions in resources and higher throughput. Current approaches rely on the use of standard cell culture vessels and bulky liquid handling equipment.

View Article and Find Full Text PDF

Regulatory guidelines require the sponsors to provide assurance of clonality of the production cell line, and when such evidence is not available, additional studies are typically required to further ensure consistent long-term manufacturing of the product. One potential approach to provide such assurance of clonal derivation of a production cell line is to characterize subclones generated from the original cell line and assess their phenotypic and genotypic similarity with the hypothesis that cell lines derived from a clonal bank will share performance, productivity and product quality characteristics. In this study, a production cell line that was cloned by a validated FACS approach coupled with day 0 imaging for verification of single-cell deposition was subcloned using validated FACS and imaging methods.

View Article and Find Full Text PDF

The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO. However, engineering superior CHO cells with improved production features has had limited success to date and cell lines are still developed through the generation and screening of large strain pools.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionneqbdj92htg5amdfuhs6cvbf2k9krj67): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once