Japanese encephalitis (JE) is one of the most important viral encephalitides in Asia. Two live-attenuated vaccines have been developed and licensed for use in countries in the region. Given the advancement of immunization of humans with increasing use of live-attenuated vaccines to prevent JE, there is increased interest to define quality standards for their manufacture, testing, nonclinical studies, and clinical studies to assess their efficacy and safety in humans.
View Article and Find Full Text PDFSerial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses.
View Article and Find Full Text PDFLive, attenuated yellow fever (YF) 17D vaccine is highly efficacious but causes rare, serious adverse events resulting from active replication in the host and direct viral injury to vital organs. We recently reported development of a potentially safer β-propiolactone-inactivated whole virion YF vaccine (XRX-001), which was highly immunogenic in mice, hamsters, monkeys, and humans [10,11]. To characterize the protective efficacy of neutralizing antibodies stimulated by the inactivated vaccine, graded doses of serum from hamsters immunized with inactivated XRX-001 or live 17D vaccine were transferred to hamsters by the intraperitoneal (IP) route 24h prior to virulent, viscerotropic YF virus challenge.
View Article and Find Full Text PDFBackground: Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed.
View Article and Find Full Text PDFIn May 2009, a group of international experts on dengue, vaccine quality and clinical evaluation met together (i) to review disease, vaccine pipeline, quality issues in manufacturing, issues of environmental risk assessment, nonclinical and clinical evaluation of live recombinant dengue vaccines and (ii) to initiate revising WHO guidelines for the production and quality control of candidate tetravalent dengue vaccines (live). This report summarizes an exchange of views on scientific and technical issues related to the quality, safety and efficacy of candidate dengue vaccines. Recognizing live dengue vaccines are the major vaccines in the clinical pipeline, the Working Group agreed (i) to focus on live dengue vaccines in the revision of the WHO guidelines and (ii) to add new guidelines on nonclinical and clinical evaluation, and environmental risk assessment for live dengue vaccines in the revision.
View Article and Find Full Text PDFIn the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide.
View Article and Find Full Text PDFSt. Louis encephalitis (SLE) and West Nile (WN) flaviviruses are genetically closely related and cocirculate in the United States. Virus neutralization tests provide the most specific means for serodiagnosis of infections with these viruses.
View Article and Find Full Text PDFThe availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses.
View Article and Find Full Text PDFThe ability of antisera raised against a candidate Japanese encephalitis virus (JEV) vaccine, ChimeriVax-JE, and the currently licensed vaccine, JE-VAX, to protect against strains of JEV representing the four major genotypes was assessed. Neutralization assays and passive protection studies in mice showed that greatest protection was provided against strains of genotypes II and III, although some protection was also afforded against genotypes I and IV strains. ChimeriVax-JE stimulated protection that was comparable or superior to the JE-VAX control.
View Article and Find Full Text PDFThree consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in the in vitro transcription step to initiate virus replication was as high as 1.
View Article and Find Full Text PDFYellow fever, dengue, Japanese encephalitis and tick-borne encephalitis viruses are the medically most important members of the Flavivirus genus composed primarily of arboviruses. In this paper, we review the commercially available traditional flavivirus vaccines against yellow fever, Japanese encephalitis, and tick-borne encephalitis, as well as modern approaches to flavivirus vaccines. Formalin inactivation technology has been employed to produce killed vaccines.
View Article and Find Full Text PDF