Publications by authors named "Treijtel N"

ASP8302 is an orally administered positive allosteric modulator of the muscarinic M receptor. Two Phase 1 studies were conducted, a first-in-human study in Europe and a Japanese phase 1 study. Both were randomized, participant- and investigator-blinded, placebo-controlled, single and multiple ascending oral doses, parallel group, clinical studies in healthy volunteers.

View Article and Find Full Text PDF

Imiquimod (IMQ) is a topical agent that induces local inflammation the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model.

View Article and Find Full Text PDF

Aim: Use of immunomodulating therapeutics for immune-mediated inflammatory diseases may cause disease-drug-drug interactions (DDDIs) by reversing inflammation-driven alterations in the metabolic capacity of cytochrome P450 enzymes. European Medicine Agency (EMA) and US Food and Drug Administration (FDA) guidelines from 2007 recommend that the DDDI potential of therapeutic proteins should be assessed. This systematic analysis aimed to characterize the available DDDI trials with immunomodulatory drugs, experimental evidence for a DDDI risk and reported DDDI risk information in FDA/EMA approved drug labelling.

View Article and Find Full Text PDF

Pilocarpine-induced salivary secretion could serve as a nontherapeutic target engagement biomarker in a clinical setting to test the activity of an M3 positive allosteric modulator (PAM). The potentiating effect on the reactivity of the M3 receptor to the agonistic effect of pilocarpine would support the mechanism of action of an M3 PAM in a variety of therapeutic areas. The aim of this study was to determine the optimal pilocarpine dose needed for evaluation of this potentiating effect.

View Article and Find Full Text PDF

ASP8477 (molecular weight 325.36 g/mol) is a fatty acid amide hydrolase inhibitor intended for the treatment of neuropathic pain. Results from in vitro studies indicated that ASP8477 is a direct inhibitor of cytochrome P450 (CYP) 2C8, 2C9, 2C19, 2D6, and 3A4 enzymes at expected efficacious concentrations, with the strongest effect on CYP2C19; a phase 1 study confirmed ASP8477 to be a CYP2C19 inhibitor.

View Article and Find Full Text PDF

The metabolism and active transport of ritonavir and saquinavir were studied using sandwich-cultured rat hepatoyctes and rat liver microsomes. For ritonavir four comparable metabolites were observed in the sandwich-culture and in microsomes. For saquinavir eight metabolites were observed in sandwich-culture and 14 different metabolites in microsomes.

View Article and Find Full Text PDF

The application of sandwich-cultured rat hepatocytes for the identification of the hepatic intrinsic clearance of compounds with widely varying extraction ratios was investigated. We previously showed the applicability of this in vitro system, in combination with a model describing molecular diffusion, hepatocyte/medium partition, and nonsaturated metabolism, which resulted in a successful identification of this parameter for tolbutamide. This approach is further validated using the compounds 7-ethoxycoumarin and warfarin, covering a 100-fold range of extraction ratios.

View Article and Find Full Text PDF

An alternative approach is introduced in determining the in vitro intrinsic clearance of slowly metabolized compounds. The longterm sandwich rat hepatocyte culture was exploited, allowing for sufficient substrate depletion to obtain a reliable clearance estimation; in its physiology, it resembles the in vivo liver, thus allowing in vivo extrapolation of the in vitro clearance value. Substrate depletion of tolbutamide and the formation of its metabolites hydroxytolbutamide and carboxytolbutamide were measured in the medium and sandwich layer.

View Article and Find Full Text PDF

The objective of this investigation was to characterize quantitatively the pharmacodynamic interaction between N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexanecarboxamide (WAY-100,635) and R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT) in vivo. The 8-OH-DPAT-induced change in body temperature was used as a pharmacodynamic endpoint. Four groups of rats each received 1 mg/kg 8-OH-DPAT in 5 min during computer-controlled infusions of physiological saline or WAY-100,635, targeted at steady-state concentrations of 20, 85, and 170 ng/ml.

View Article and Find Full Text PDF

Agonists for the 5-hydroxytryptamine (HT)(1A) receptor induce a hypothermic response that is believed to occur by lowering of the body's set-point temperature. We have developed a physiological model that can be used to predict the complex time course of the hypothermic response after administration of 5-HT(1A) agonists to rats. In the model, 5-HT(1A) agonists exert their effect by changing heat loss through a control mechanism with a thermostat signal that is proportional to the difference between measured and set-point temperature.

View Article and Find Full Text PDF

A rapid, sensitive and enantioselective HPLC assay for the simultaneous determination of the reference 5-HT1A receptor agonists, R-(+)- and S-(-)-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT and S-8-OH-DPAT, respectively), in rat blood is presented. A selective extraction procedure was developed using a preliminary sample clean-up followed by isolation of R- or S-8-OH-DPAT on mixed-mode NARC-2 solid-phase columns. Separation of the enantiomers was performed by high-performance liquid chromatography using a Chiracel OD-R column.

View Article and Find Full Text PDF