Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis.
View Article and Find Full Text PDFBackground: Evaluation of the social and economic outcomes of health research funding is an area of intense interest and debate. Typically, approaches have sought to assess the impact of research funding by medical charities or regional government bodies. Independent research institutes have a similar need for accountability in investment decisions but have different objectives and funding, thus the existing approaches are not appropriate.
View Article and Find Full Text PDFInsulin-like peptide 5 (INSL5) is a member of insulin/relaxin superfamily of peptides. It has recently been identified as the cognate ligand for the G-protein-coupled receptor, RXFP4. Although the complete physiological role of this naturally occurring peptide is still under investigation, there is evidence that it acts to both stimulate appetite and activate colon motility.
View Article and Find Full Text PDFIn the setting of myocardial infarction (MI), implanted stem cell viability is low and scar formation limits stem cell homing, viability, and integration. Thus, interventions that favorably remodel fibrotic healing may benefit stem cell therapies. However, it remains unclear whether it is feasible and safe to remodel fibrotic healing post-MI without compromising ventricular remodeling and dysfunction.
View Article and Find Full Text PDFRelaxin is a pleiotropic hormone which exerts its biological functions through its G-protein coupled receptor, RXFP1. While relaxin is well known for its reproductive and antifibrotic roles, recent studies suggest that it is produced by cancer cells and acts on RXFP1 to induce growth and metastasis. Furthermore, more recently Silvertown et al.
View Article and Find Full Text PDFKidney failure is a major health problem worldwide. Patients with end-stage renal disease require intensive medical support by dialysis or kidney transplantation. Current methods for diagnosis of kidney disease are either invasive or insensitive, and renal function may decline by as much as 50% before it can be detected using current techniques.
View Article and Find Full Text PDFSolid-phase peptide synthesis has been refined to a stage where efficient preparation of long and complex peptides is now achievable. However, the postsynthesis handling of poorly soluble peptides often remains a significant hindrance to their purification and further use. Several synthetic schemes have been developed for the preparation of such peptides containing modifications to aid their solubility.
View Article and Find Full Text PDFSurface-enhanced laser desorption ionization-time-of-flight mass spectrometry was employed to identify potential biomarkers for early-onset fibrosis. These biomarkers were then used to evaluate the efficacy of relaxin to reverse or ameliorate the development of the condition.
View Article and Find Full Text PDFDerived from fibroblasts, myofibroblasts are the principal cells that are responsible for the synthesis and reorganization of excess matrix in renal interstitial fibrosis. Recognized from their de novo expression of alpha-smooth muscle actin, myofibroblast differentiation and activity can be influenced by several factors, including a combination of growth factors and other soluble mediators, extracellular matrix components, and mechanical stress. Relaxin has previously been shown to inhibit renal myofibroblast differentiation in vitro, an effect partly mediated through its ability to interfere with the transforming growth factor-beta1 (TGF-beta1) pathway via inhibition of Smad2 phosphorylation and translocation.
View Article and Find Full Text PDFAs a hallmark of heart disease, cardiac fibrosis contributes to the development of heart failure and arrhythmias and forms a key therapeutic target. There is a major unmet need for selective, potent, and safe antifibrotic drugs. Earlier studies revealed a cardiac fibrosis phenotype in relaxin-1-deficient mice.
View Article and Find Full Text PDFAs a foundation for regulatory and functional studies of central relaxin family peptide receptor systems, we are mapping the distribution of the different receptors in the brain of rat, mouse, and nonhuman primates, attempting to identify the nature of the receptor-positive neurons in key circuits and establish the complementary distribution of the respective ligands in these species. Here we review progress in mapping RXFP1, RXFP2, and RXFP3 (mRNAs and proteins) and their respective ligands and discuss some of the putative functions for these peptides and receptors that are being explored using receptor-selective agonist and antagonist peptides and receptor and peptide gene deletion mouse strains. Comparative studies reveal an association of RXFP1 and RXFP2 with excitatory neurons but a differential regional or cellular distribution, in contrast to the association of RXFP3 with inhibitory neurons.
View Article and Find Full Text PDFThe primary binding sites of the relaxin and insulin-like peptide 3 (INSL3) receptors, RXFP1 and RXFP2, are found within the leucine-rich repeats (LRRs) of the ectodomains. Specific B-chain residues in the peptides interact with residues in the inner beta-sheets of the LRRs of the receptors. Relaxin binds to RXFP2 with high affinity, although INSL3 has a very poor affinity for RXFP1.
View Article and Find Full Text PDFA synthetic cyclic regioselectively addressable functionalized template was used to prepare six analogs that presented the side chains of the key receptor-binding residues of each of H2 and H3 relaxins and insulin-like peptide 3. None showed any binding affinity for RXFP1, RXFP2, or RXFP3, indicating that the key residues were either incorrectly oriented or that additional residues are required for receptor binding.
View Article and Find Full Text PDFSuccessful methods for the chemical assembly of insulin-like peptides allow the detailed study of their structure and function relationships. However, the two-chain, three-disulfide bond structure of this family of peptides, which includes relaxin, has long represented a significant challenge with respect to their chemical synthesis. Early efforts involved the random combination of the two synthetic S-reduced chains under oxidizing conditions to spontaneously form the three disulfide bonds.
View Article and Find Full Text PDFThe availability of improved peptide synthesis procedures, convenient and sensitive assays for receptor binding and activation, together with advances in methods for structural characterization, has enabled the key structural features of the relaxin family of peptides responsible for biological activity to be defined. Not surprisingly, despite the similarities in primary amino acid sequences, different structural domains and residues are involved in the binding and activation at the four known relaxin family peptide receptors (RXFP1 to -4). Most of our knowledge on structure and function relates to the relaxin-RXFP1, insulin-like peptide 3 (INSL3)-RXFP2, and relaxin-3-RXFP3 systems, with information accumulating not only on the critical ligand structures but also the domains and residues on the receptor itself that are required for specificity and activation.
View Article and Find Full Text PDFReplacement of disulfide bonds with non-reducible isosteres can be a useful means of increasing the in vivo stability of a protein. We describe the replacement of the A-chain intramolecular disulfide bond of human relaxin-3 (H3 relaxin, INSL7), an insulin-like peptide that has potential applications in the treatment of stress and obesity, with the physiologically stable dicarba bond. Solid phase peptide synthesis was used to prepare an A-chain analogue in which the two cysteine residues that form the intramolecular bond were replaced with allylglycine.
View Article and Find Full Text PDFMice deficient in the antifibrotic hormone relaxin develop structural changes in the airway that resemble airway remodeling, and demonstrate exaggerated remodeling changes in models of allergic airways disease (AAD). Relaxin expression in asthma has not been previously studied. We evaluated the efficacy of relaxin in the treatment of established airway remodeling in a mouse model of AAD.
View Article and Find Full Text PDFRelaxin-3, a member of the insulin superfamily, is involved in regulating stress and feeding behavior. It is highly expressed in the brain and is the endogenous ligand for the receptor RXFP3. As relaxin-3 also interacts with the relaxin receptor RXFP1, selective agonists and antagonists are crucial for studying the physiological function(s) of the relaxin-3/RXFP3 pair.
View Article and Find Full Text PDFThe hormone relaxin inhibits renal myofibroblast differentiation by interfering with TGF-beta1/Smad2 signaling. However, the pathways involved in the relaxin-TGF-beta1/Smad2 interaction remain unknown. This study investigated the signaling mechanisms by which human gene-2 (H2) relaxin regulates myofibroblast differentiation in vitro by examining its effects on mixed populations of fibroblasts and myofibroblasts propagated from injured rat kidneys.
View Article and Find Full Text PDFInsulin-like 3 (INSL3) is a novel circulating peptide hormone that is produced by testicular Leydig cells and ovarian thecal and luteal cells. In males, INSL3 is responsible for testicular descent during foetal life and suppresses germ cell apoptosis in adult males, whereas in females, it causes oocyte maturation. Antagonists of INSL3 thus have significant potential clinical application as contraceptives in both males and females.
View Article and Find Full Text PDFEndogenous relaxin has recently been demonstrated to protect the airway/lung against age-related fibrosis and against inflammation-associated airway fibrosis in animal models of allergic airways disease (AAD). In the current study, we examined the contribution of the primary relaxin receptor, relaxin family peptide receptor-1 (RXFP1), in mediating these effects of relaxin. Lung tissues from healthy aging RXFP1 gene-knockout (Rxfp1(-/-)) and wild-type (Rxfp1(+/+)) mice and from 8- to 10-wk-old Rxfp1(-/-) and Rxfp1(+/+) mice subjected to a mouse model of AAD were assessed for various markers of airway fibrosis and remodeling.
View Article and Find Full Text PDFInsulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4.
View Article and Find Full Text PDFThe relaxin receptor, RXFP1, is a member of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family. These receptors are characterized by a large extracellular ectodomain containing leucine-rich repeats which contain the primary ligand binding site. RXFP1 contains six putative Asn-linked glycosylation sites in the ectodomain at positions Asn-14, Asn-105, Asn-242, Asn-250, Asn-303, and Asn-346, which are highly conserved across species.
View Article and Find Full Text PDFThe relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown.
View Article and Find Full Text PDFThe effect of endogenous relaxin on the development of cardiac hypertrophy, dysfunction, and fibrosis remains completely unknown. We addressed this question by subjecting relaxin-1 deficient (Rln1-/-) and littermate control (Rln1+/+) mice of both genders to chronic transverse aortic constriction (TAC). The extent of left ventricular (LV) remodeling and dysfunction were studied by serial echocardiography over an 8-wk period and by micromanometry.
View Article and Find Full Text PDF