Publications by authors named "Tredici G"

Acute respiratory disorder is a common sub-clinical condition affecting elite cyclists. Monitoring the perturbations of the immunological cells in the respiratory tract, indicative of a likely proinflammatory state, during an International Cycling Union world tour is a challenging task. The aim of this study was to follow up on the sign and symptoms of upper way respiratory infections with or without asthma, using non-invasive methods, during a 21-day race (100° Giro d'Italia, 2017).

View Article and Find Full Text PDF

This study applied an untargeted-targeted (UT) fingerprinting approach, based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF MS), to assess the effects of rainfall and temperature (both seasonal and elevational) on the tea metabolome. By this strategy, the same compound found in multiple samples need only to be identified once, since chromatograms and mass spectral features are aligned in the data analysis process. Primary and specialized metabolites of leaves from two Chinese provinces, Yunnan (pu'erh) and Fujian (oolong), and a farm in South Carolina (USA, black tea) were studied.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are adult bone marrow-derived stem cells actually proposed indifferently for the therapy of neurological diseases of both the Central (CNS) and the Peripheral Nervous System (PNS), as a panacea able to treat so many different diseases by their immunomodulatory ability and supportive action on neuronal survival. However, the identification of the exact mechanism of MSC action in the different diseases, although mandatory to define their real and concrete utility, is still lacking. Moreover, CNS and PNS neurons present many different biological properties, and it is still unclear if they respond in the same manner not only to MSC treatment, but also to injuries.

View Article and Find Full Text PDF

Type-1 Diabetes is generally treated with exogenous insulin administration. Despite treatment, a very common long term consequence of diabetes is the development of a disabling and painful peripheral neuropathy. The transplantation of pancreatic islets is an advanced alternative therapeutic approach, but its clinical application is still very limited, mainly because of the great number of islets required to complete the procedure and of their short-term survival.

View Article and Find Full Text PDF

Background And Aim: Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells.

View Article and Find Full Text PDF

The aim of the study was to investigate changes in hydration status by means of bioelectrical impedance vector analyses (BIVA) and to assess its influence on power output and rating of perceived exertion (RPE) during the Giro d'Italia 2014. Daily bioelectrical impedance analysis were performed on 9 professional road cyclists (age: 28.2 ± 4.

View Article and Find Full Text PDF

Human bone marrow mesenchymal stem cells (hBM-MSCs) are the best characterized multipotent adult stem cells. Their self-renewal capacity, multilineage differentiation potential, and immunomodulatory properties have indicated that they can be used in many clinical therapies. In a previous work we studied the DNA methylation levels of hBM-MSC genomic DNA in order to delineate a kind of methylation signature specific for early and late passages of culture.

View Article and Find Full Text PDF

An investigation of whether body water changes during the Giro d'Italia affected average maximal mean power (MMP) of different time durations and to establish whether phase-angle and body cell mass (BCM) are related to MMP in elite cyclists. Approximately 2 h after each stage of the race, a bioelectrical impedance analysis was performed on 8 cyclists and analysed according to bioelectrical impedance vector analyses. Additionally, MMP of different time durations were recorded during each stage.

View Article and Find Full Text PDF

Background/aim: Peripheral neurotoxicity is a dose-limiting factor of many chemotherapeutic agents, including cisplatin. Mesenchymal stem cells are promising for the treatment of several neurological disorders, and our aim was to verify the neuroprotective potential of human mesenchymal stem cells (hMSCs) on dorsal root ganglia (DRG) exposed to cisplatin.

Materials And Methods: DRG were exposed to different cisplatin concentrations and then co-cultured with hMSCs or with hMSC-conditioned medium.

View Article and Find Full Text PDF

Neurobasal medium (NBM) is a widely used medium for neuronal cultures, originally formulated to support survival of rat hippocampal neurons, but then optimized for several other neuronal subtypes. In the present study, the toxic effect of NBM on long-term cortical neuron cultures has been reported and investigated. A significant neuronal cell loss was observed 24 h after the total medium change performed at days in vitro 10.

View Article and Find Full Text PDF

Background And Objectives: Cellular therapies using Mesenchymal Stem Cells (MSCs) represent a promising approach for the treatment of degenerative diseases, in particular for mesengenic tissue regeneration. However, before the approval of clinical trials in humans, in vitro studies must be performed aimed at investigating MSCs' biology and the mechanisms regulating their proliferation and differentiation abilities. Besides studies on human MSCs (hMSCs), MSCs derived from rodents have been the most used cellular type for in vitro studies.

View Article and Find Full Text PDF

Introduction And Hypothesis: To test in vitro and in vivo the capability of mesh materials to act as scaffolds for rat-derived mesenchymal stem cells (rMSCs) and to compare inflammatory response and collagen characteristics of implant materials, either seeded or not with rMSCs.

Methods: rMSCs isolated from rat bone marrow were seeded and cultured in vitro on four different implant materials. Implants showing the best rMSC proliferation rate were selected for the in vivo experiment.

View Article and Find Full Text PDF

Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrP(C)) synthesis and PrP(C) levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrP(C) levels in rat SC and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC.

View Article and Find Full Text PDF

The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers β III-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs.

View Article and Find Full Text PDF

The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear. The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures.

View Article and Find Full Text PDF

Unruptured intracranial aneurysms represent a decisional challenge. Treatment risks have to be balanced against an unknown probability of rupture. A better understanding of the physiopathology is the basis for a better prediction of the natural history of an individual patient.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thus ex vivo expansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs.

View Article and Find Full Text PDF

Over the last few years the therapeutic approach to demyelinating diseases has radically changed, strategies having been developed aimed at partnering the classic symptomatic treatments with the most advanced regenerative medicine tools. At first, the transplantation of myelinogenic cells, Schwann cells or oligodendrocytes was suggested, but the considerable technical difficulties, (poor availability, difficulties in harvesting and culturing, and the problem of rejection in the event of non-autologous sources), shifted attention towards more versatile cellular types, such as Mesenchymal Stem Cells (MSCs). Recent studies have already demonstrate both in vitro and in vivo that glially-primed MSCs (through exposure to chemical cocktails) have myelogenic abilities.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells).

View Article and Find Full Text PDF

Introduction: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles.

View Article and Find Full Text PDF

The spontaneous expression of neural markers by mesenchymal stem cells (MSCs) has been considered to be a demonstration of MSCs' predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs) at different culture passages (from early to late).

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are a diffuse cerebrovascular disease affecting approximately 0.5% of the population. A CCM is characterized by abnormally enlarged and leaky capillaries arranged in mulberry-like structures with no clear flow pattern.

View Article and Find Full Text PDF

Objective: To describe the application of intraoperative monitoring techniques during aneurysm surgery and to discuss the advantages and limitations of these techniques in prevention of postoperative neurologic deficits.

Methods: Articles found in the literature through PubMed for the time frame 1980-2011 and the authors' personal files were reviewed.

Results: Various techniques for detection of vascular insufficiency are available, including direct methods to measure cerebral blood flow and indirect methods to evaluate the integrity of neurologic pathways.

View Article and Find Full Text PDF

The pathogenesis of cobalamin (Cbl)-deficient (Cbl-D) neuropathy is not clear, nor is the role of prions (PrP(C)) in myelin maintenance. However, as it is known that Cbl deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat spinal cord (SC), and that TNF-α and EGF regulate PrP(C) expression in vitro, we investigated whether Cbl deficiency modifies SC PrP(C) and PrP(C)-mRNA levels in Cbl-D rats. PrP(C) levels had increased by the time myelin lesions appeared.

View Article and Find Full Text PDF

Introduction: Cobalamin (Cbl) deficiency affects the peripheral nervous system (PNS) morphologically and functionally. We investigated whether the octapeptide repeat (OR) region of prion protein (PrP(C)) (which is claimed to have myelinotrophic properties) is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy.

Methods: We intracerebroventricularly administered antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrP(C)s to normal rats to reproduce PNS Cbl-D-like lesions.

View Article and Find Full Text PDF