Publications by authors named "Trebak F"

Sickle cell disease (SCD) is a hereditary hemoglobinopathy marked by hemolytic anemia and vaso-occlusive events (VOEs). Chronic endothelial activation, inflammation, and coagulation activation contribute to vascular congestion, VOEs, and end-organ damage. Coagulation proteases such as thrombin and activated protein C (APC) modulate inflammation and endothelial dysfunction by activating protease-activated receptor 1 (PAR1), a G-protein-coupled receptor.

View Article and Find Full Text PDF

A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD.

View Article and Find Full Text PDF

Background While significant advances have been made in uncovering the aetiology of Alzheimer's disease and related dementias at the genetic level, molecular events at the epigenetic level remain largely undefined. Emerging evidence indicates that small non-coding RNAs (sncRNAs) and their associated RNA modifications are important regulators of complex physiological and pathological processes, including aging, stress responses, and epigenetic inheritance. However, whether small RNAs and their modifications are altered in dementia is not known.

View Article and Find Full Text PDF

High salt (sodium) intake leads to the development of hypertension despite the fact that plasma sodium concentration ([Na]) is usually normal in hypertensive human patients. Increased cerebrospinal fluid (CSF) sodium contributes to elevated sympathetic activity and high blood pressure (BP) in rodent models of hypertension. However, whether there is an increased accumulation of sodium in the CSF of humans with chronic hypertension is not well defined.

View Article and Find Full Text PDF

Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined.

View Article and Find Full Text PDF

Increased sodium appetite is a physiological response to sodium deficiency; however, it has also been implicated in disease conditions such as congestive heart failure, kidney failure, and salt-sensitive hypertension. The central nervous system is the major regulator of sodium appetite and intake behavior; however, the neural mechanisms underlying this behavior remain incompletely understood. Here, we investigated the involvement of the (pro)renin receptor (PRR), a component of the brain renin-angiotensin system, in the regulation of sodium intake in a neuron-specific PRR knockout (PRRKO) mouse model generated previously in our laboratory.

View Article and Find Full Text PDF

EM66 is a peptide derived from the chromogranin, secretogranin II (SG-II). Recent findings in mice indicate that EM66 is a novel anorexigenic neuropeptide that regulates hypothalamic feeding behavior, at least in part, by activating the POMC neurons of the arcuate nucleus. The present study aimed to investigate the mechanism of action of EM66 in the control of feeding behavior and, more specifically, its potential interactions with the NPY and POMC systems in rat.

View Article and Find Full Text PDF

EM66 is a conserved 66-amino acid peptide derived from secretogranin II (SgII), a member of the granin protein family. EM66 is widely distributed in secretory granules of endocrine and neuroendocrine cells, as well as in hypothalamic neurones. Although EM66 is abundant in the hypothalamus, its physiological function remains to be determined.

View Article and Find Full Text PDF

The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen.

View Article and Find Full Text PDF