The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including cells, that regulate the development of dermal white adipose tissue (dWAT).
View Article and Find Full Text PDFWe report that squaric esters can serve as bifunctional reagents for selective peptide stapling reactions. Formation of the squaric amide staple occurs under mild conditions with amine-containing side chains. We show that short resin-bound peptides are readily stapled on solid phase and that stapling can occur at various relative positions along the peptide and with various amine tether lengths (e.
View Article and Find Full Text PDFLong-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp.
View Article and Find Full Text PDFObjective: The capacity to generate new adipocytes from precursor cells is critical for maintaining metabolic health. Adipocyte precursor cells (APCs) constitute a heterogenous collection of cell types; however, the contribution of these various cell types to adipose tissue expansion in vivo remains unknown. The aim of the current study is to investigate the contribution of Dpp4+ progenitors to de novo adipogenesis.
View Article and Find Full Text PDFChemical modification is a powerful approach to expand the chemical diversity and functionality of natural DNA. However, when chemically modified oligonucleotides are employed in DNA-based reactions or structures, it becomes quite difficult to predict, understand, and control their kinetics and thermodynamics. To address this challenge, we introduce a rationally designed DNA balance capable of measuring critical thermodynamic and kinetic properties of chemically modified DNA in their native environment.
View Article and Find Full Text PDFThere is a need for biosensing systems that can be operated at the point-of-care (POC) for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity in clinical samples, using a sample-in-answer-out approach, remain elusive. Reported here is an electrochemical bio-barcode assay (e-biobarcode assay) that integrates biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.
View Article and Find Full Text PDFToehold-mediated DNA strand displacement is the fundamental basis for the construction and operation of diverse DNA devices, including circuits, machines, sensors, and reconfigurable structures. Controllable activation and regulation of toeholds are critical to construct devices with multistep, autonomous, and complex behaviors. A handful of unique toehold activation mechanisms, including toehold-exchange, associative toehold, and remote toehold, have been developed and are often combined to achieve desired strand displacement behaviors and functions.
View Article and Find Full Text PDFProximity-induced intramolecular DNA strand displacement (PiDSD) is one of the key mechanisms involved in many DNA-mediated proximity assays and protein-responsive DNA devices. However, the kinetic profile of PiDSD has never been systematically examined before. Herein, we report a systematic study to explore the kinetics of PiDSD by combining the uses of three DNA strand displacement techniques, including a binding-induced DNA strand displacement to generate PiDSD, an intermolecular DNA strand-exchange strategy to measure a set of key kinetic parameters for PiDSD, and a toehold-mediated DNA strand displacement to generate fluorescence signals for the real-time monitoring of PiDSD.
View Article and Find Full Text PDFRecent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints.
View Article and Find Full Text PDFObjectives: The objective is to investigate the hypothesis that Neandertal eye orbits can predict group size and social cognition as presented by Pearce et al. (Proc R Soc B Biol Sci 280 (2013) 20130168).
Materials And Methods: We performed a linear regression of known orbital aperture diameter (OAD), neocortex ratio, and group size among 18 extant diurnal primate species.