In this paper, motivated by the advantages of the generalized conformable derivatives, an impulsive conformable Cohen-Grossberg-type neural network model is introduced. The impulses, which can be also considered as a control strategy, are at fixed instants of time. We define the notion of practical stability with respect to manifolds.
View Article and Find Full Text PDFIn this paper, a new class of impulsive neural networks with fractional-like derivatives is defined, and the practical stability properties of the solutions are investigated. The stability analysis exploits a new type of Lyapunov-like functions and their derivatives. Furthermore, the obtained results are applied to a bidirectional associative memory (BAM) neural network model with fractional-like derivatives.
View Article and Find Full Text PDF