The increasing number of positron-emission tomography (PET) tracers being developed to aid drug development and create new diagnostics has led to an increased need for radiosynthesis development and optimization. Current radiosynthesis instruments are designed to produce large-scale clinical batches and are often limited to performing a single synthesis before they must be decontaminated by waiting for radionuclide decay, followed by thorough cleaning or disposal of synthesizer components. Though with some radiosynthesizers it is possible to perform a few sequential radiosyntheses in a day, none allow for parallel radiosyntheses.
View Article and Find Full Text PDFCurrent automated radiosynthesizers are designed to produce large clinical batches of radiopharmaceuticals. They are not well suited for reaction optimization or novel radiopharmaceutical development since each data point involves significant reagent consumption, and contamination of the apparatus requires time for radioactive decay before the next use. To address these limitations, a platform for performing arrays of miniature droplet-based reactions in parallel, each confined within a surface-tension trap on a patterned polytetrafluoroethylene-coated silicon "chip", was developed.
View Article and Find Full Text PDF