Thermal tolerance and preference are key parameters impacting agricultural production systems. In this study, the impact of larval diet on black soldier fly thermal tolerance and preference across life-stages and sexes was examined. Larvae were fed either a low-protein high-carbohydrate synthetic diet (i.
View Article and Find Full Text PDFMass production of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), larvae results in massive heat generation, which impacts facility management, waste conversion, and larval production. We tested daily substrate temperatures with different population densities (i.
View Article and Find Full Text PDFBackground: Post-mortem microbial communities are increasingly investigated as proxy evidence for a variety of factors of interest in forensic science. The reported predictive power of the microbial community to determine aspects of the individual's post-mortem history (e.g.
View Article and Find Full Text PDFThe temperature dependent development rates of blow flies allow blow flies to be used as biological clocks in forensic death investigations. However, the upper thermal limits of adult survival and oviposition, both required for producing larvae, remains largely unknown. Therefore, in this study we examined the impact of a range of temperatures between 37 °C and 44 °C on the likelihood of survival and egg-laying behavior of two species of medicolegal forensic importance, (Meigen) and (Meigen) (Diptera: Calliphoridae).
View Article and Find Full Text PDFBumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible.
View Article and Find Full Text PDFJ Am Mosq Control Assoc
June 2021
This study examined Culex pipiens pallens responses to different combinations of colors and chemicals employed via a mosquito trap under semifield conditions. Our results indicated that Cx. p.
View Article and Find Full Text PDFDetermining the thermal tolerance of an organism is important when assessing its activity time and survival rate in a given environment. However, thermal tolerance is not a static trait and may be influenced by a number of environmental and organismal factors. We report the results of three experiments investigating the effects of environmental temperature, exposure duration, age, sex, and nutrient availability on the upper thermal tolerance of the adult secondary screwworm, Cochliomyia macellaria.
View Article and Find Full Text PDFOver the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion.
View Article and Find Full Text PDFHormones such as glucocorticoids and androgens enable animals to respond adaptively to environmental stressors. For this reason, circulating glucocorticoids became a popular biomarker for estimating the quality of an environment, and circulating androgens are frequently used to indicate social dominance. Here, we show that access to thermal resources influence the hormones and behavior of male lizards (Sceloporus jarrovi).
View Article and Find Full Text PDFUnderstanding the impacts of anthropogenic climate change requires knowing how animals avoid heat stress, and the consequences of failing to do so. Animals primarily use behavior to avoid overheating, but biologists' means for measuring and interpreting behavioral signs of stress require more development. Herein, we develop the measurement of behavioral thermal tolerance using four species of lizards.
View Article and Find Full Text PDFUnderstanding methodological and biological sources of bias during the measurement of thermal parameters is essential for the advancement of thermal biology. For more than a century, studies on lizards have deepened our understanding of thermal ecophysiology, employing multiple methods to measure thermal preferences and tolerances. We reviewed 129 articles concerned with measuring preferred body temperature (PBT), voluntary thermal tolerance, and critical temperatures of lizards to offer: a) an overview of the methods used to measure and report these parameters, b) a summary of the methodological and biological factors affecting thermal preference and tolerance, c) recommendations to avoid identified pitfalls, and d) directions for continued progress in our application and understanding of these thermal parameters.
View Article and Find Full Text PDFChanges in the time available for organisms to maintain physiologically preferred temperatures (thermal opportunity) is a primary mechanism by which climate change impacts the fitness and population dynamics of organisms. Yet, it is unclear whether losses or gains in thermal opportunity result in proportional changes in rates of energy procurement and use. We experimentally quantified lizard food consumption and energy assimilation at different durations of thermal opportunity.
View Article and Find Full Text PDFAlthough most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources.
View Article and Find Full Text PDF