Structural DNA nanotechnology enables custom fabrication of nanoscale devices and promises diverse biological applications. However, the effects of design on DNA nanostructure (DN)-cell interactions in vitro and in vivo are not yet well-characterized. origamiFISH is a recently developed technique for imaging DNs in cells and tissues.
View Article and Find Full Text PDFStructural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts.
View Article and Find Full Text PDFDNA nanotechnology enables programmable self-assembly of nucleic acids into user-prescribed shapes and dynamics for diverse applications. This work demonstrates that concepts from DNA nanotechnology can be used to program the enzymatic activity of the phage-derived T7 RNA polymerase (RNAP) and build scalable synthetic gene regulatory networks. First, an oligonucleotide-tethered T7 RNAP is engineered via expression of an N-terminally SNAP-tagged RNAP and subsequent chemical coupling of the SNAP-tag with a benzylguanine (BG)-modified oligonucleotide.
View Article and Find Full Text PDFImmune cells sense, communicate, and logically integrate a multitude of environmental signals to make important cell-fate decisions and fulfill their effector functions. These processes are initiated and regulated by a diverse array of immune receptors and via their dynamic spatiotemporal organization upon ligand binding. Given the widespread relevance of the immune system to health and disease, there have been significant efforts toward understanding the biophysical principles governing immune receptor signaling and activation, as well as the development of biomaterials which exploit these principles for therapeutic immune engineering.
View Article and Find Full Text PDF