Androgen receptor (AR) signaling in Sertoli cells is known to be important for germ-cell progression through meiosis, but the extent to which androgens indirectly regulate specific meiotic stages is not known. Here, we combine synchronization of spermatogenesis, cytological analyses and single-cell RNAseq (scRNAseq) in the ertoli-ell ndrogen eceptor nockut (SCARKO) mutant and control mice, and demonstrate that SCARKO mutant spermatocytes exhibited normal expression and localization of key protein markers of meiotic prophase events, indicating that initiation of meiotic prophase is not androgen dependent. However, spermatocytes from SCARKO testes failed to acquire competence for the meiotic division phase.
View Article and Find Full Text PDFretinoic acid (RA), the active metabolite of vitamin A, is a ligand for several nuclear receptors and acts as a critical regulator of many physiologic processes. The cytochrome P450 family 26 (CYP26) enzymes are responsible for RA clearance, and are potential drug targets to increase concentrations of endogenous RA in a tissue-specific manner. Talarozole is a potent inhibitor of CYP26A1 and CYP26B1, and has shown some success in clinical trials.
View Article and Find Full Text PDFAll-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver.
View Article and Find Full Text PDFPerturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients.
View Article and Find Full Text PDFThe active metabolite of vitamin A, retinoic acid (RA), is known to be essential for spermatogenesis. Changes to RA levels within the seminiferous epithelium can alter the development of male germ cells, including blocking their differentiation completely. Excess RA has been shown to cause germ cell death in both neonatal and adult animals, yet the cells capable of degrading RA within the testis have yet to be investigated.
View Article and Find Full Text PDFall-trans retinoic acid (atRA), the active metabolite of vitamin A, is an essential signaling molecule. Specifically the concentrations of atRA are spatiotemporally controlled in target tissues such as the liver and the testes. While the enzymes of the aldehyde dehydrogenase 1A family (ALDH1A) are believed to control the synthesis of atRA, a direct relationship between altered ALDH1A activity and tissue atRA concentrations has never been shown.
View Article and Find Full Text PDFThe asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm.
View Article and Find Full Text PDFRetinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown.
View Article and Find Full Text PDFThe BDADs (bis-[dichloroacetyl]-diamines) are compounds that can inhibit spermatogenesis via blocking the metabolism of vitamin A. We utilized one specific BDAD, WIN 18,446, to manipulate the endogenous production of retinoic acid (RA) in the testis to further investigate the action of this compound on mammalian sperm production. Transient treatment of adult male mice with WIN 18,446 blocked spermatogonial differentiation and induced significant changes in the cycle of the seminiferous epithelium.
View Article and Find Full Text PDFBis-(dichloroacetyl)-diamines (BDADs) are compounds that inhibit spermatogenesis and function as male contraceptives in many species; however, their mechanism of action has yet to be fully investigated. It has been proposed that BDADs may function via inhibition of testicular retinoic acid (RA) biosynthesis. We employed an organ culture technique and the expression of a marker for RA activity, Stra8 (stimulated by retinoic acid gene 8), to investigate if the BDAD WIN 18,446 inhibited the biosynthesis of RA from retinol (ROL) in neonatal and adult murine testis and in the embryonic murine gonad.
View Article and Find Full Text PDF