Sortase-catalyzed transacylation reactions are widely used for the construction of non-natural protein derivatives. However, the most commonly used enzyme for these strategies (sortase A from Staphylococcus aureus) is limited by its narrow substrate scope. To expand the range of substrates compatible with sortase-mediated reactions, we characterized the in vitro substrate preferences of eight sortase A homologues.
View Article and Find Full Text PDFA modified sortase A recognition motif containing a masked Ni(2+)-binding peptide was employed to boost the efficiency of sortase-catalyzed ligation reactions. Deactivation of the Ni(2+)-binding peptide using a Ni(2+) additive improved reaction performance at low to equimolar ratios of the glycine amine nucleophile and sortase substrate. The success of this approach was demonstrated with both peptide and protein substrates.
View Article and Find Full Text PDFA delivery platform was developed using silk-based hydrogels, and sustained delivery of the cationic chemokine CXCL12 at therapeutically relevant doses is demonstrated. Hydrogels were prepared from plain silk and silk that had been chemically modified with sulfonic acid groups. CXCL12 was mixed with the silk solution prior to gelation, resulting in 100% encapsulation efficiency, and both hydrated and lyophilized gels were compared.
View Article and Find Full Text PDF