Publications by authors named "Travis J Jerde"

Chronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo.

View Article and Find Full Text PDF

The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia.

View Article and Find Full Text PDF

The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT).

View Article and Find Full Text PDF

The gene fusion and subsequent overexpression of the ERG transcription factor occurs in ∼50% of prostate tumors, making it the most common abnormality of the prostate cancer genome. While ERG has been shown to drive tumor progression and cancer-related phenotypes, as a transcription factor it is difficult to target therapeutically. Using a genetic screen, we identified the toll-like receptor 4 (TLR4) signaling pathway as important for ERG function in prostate cells.

View Article and Find Full Text PDF

Bladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments.

View Article and Find Full Text PDF

A key feature of prostate cancer progression is the induction and activation of survival proteins, including the Inhibitor of Apoptosis (IAP) family member survivin. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating oncogenic transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells and .

View Article and Find Full Text PDF

Background: Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model.

View Article and Find Full Text PDF

More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS.

View Article and Find Full Text PDF

Lower urinary tract symptoms (LUTS) in aging men are extremely common. They have historically been attributed to benign prostatic hyperplasia (BPH), enlargement of the prostate, and bladder outlet obstruction. However, recent studies have revealed acute and chronic inflammation to be highly associated with LUTS, correlated with prostatic enlargement, and implicated as a cause of prostatic fibrosis that contributes to bladder outlet obstruction.

View Article and Find Full Text PDF

Purpose: Both prostate cancer and benign prostatic hyperplasia are associated with inflammatory microenvironments. Inflammation is damaging to tissues, but it is unclear how the inflammatory microenvironment protects specialized epithelial cells that function to proliferate and repair the tissue. The objective of this study is to characterize the cell death and cell survival response of the prostatic epithelium in response to inflammation.

View Article and Find Full Text PDF

Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells.

View Article and Find Full Text PDF

Background: The presence of inflammation in prostate cancer (PCa) and benign prostate hyperplasia (BPH) has been well described but the cellular mechanisms by which inflammation modulates the prostate are currently unclear. Prostate stem cells (PSC) not only maintain prostate homeostasis but also are considered to be the cell of origin of PCa and an important contributor to BPH. However, the impact of inflammation on PSC is not well understood.

View Article and Find Full Text PDF

Prostatic inflammation is a nearly ubiquitous pathological feature observed in specimens from benign prostate hyperplasia and prostate cancer patients. The microenvironment of the inflamed prostate is highly reactive, and epithelial hyperplasia is a hallmark feature of inflamed prostates. How inflammation orchestrates epithelial proliferation as part of its repair and recovery action is not well understood.

View Article and Find Full Text PDF

Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation.

View Article and Find Full Text PDF

Background: The RAS/ERK and PI3K/AKT pathways induce oncogenic gene expression programs and are commonly activated together in cancer cells. Often, RAS/ERK signaling is activated by mutation of the RAS or RAF oncogenes, and PI3K/AKT is activated by loss of the tumor suppressor PTEN. In prostate cancer, PTEN deletions are common, but, unlike other carcinomas, RAS and RAF mutations are rare.

View Article and Find Full Text PDF

The condition known as benign prostatic hyperplasia may be defined as a benign enlargement of the prostate gland resulting from a proliferation of both benign epithelial and stromal elements. It might also be defined clinically as a constellation of lower urinary tract symptoms (LUTSs) in aging men. The purpose of this review is to consider the ways in which inflammatory cytokines belonging to the interleukin family, members of the IFG family, and stem cells may contribute to the development and progression of BPH-LUTS.

View Article and Find Full Text PDF

Background: Prostatic inflammation is gaining increasing attention as a potential etiologic factor in prostate cancer, benign prostatic hyperplasia, lower urinary tract symptoms, and CPPS. This study was performed to address the need for a well characterized model of acute prostatic inflammation that may be used to study the effect of acute inflammation on epithelial and stromal cell proliferation, voiding behavior, and neurovascular physiology.

Methods: Uropathogenic E.

View Article and Find Full Text PDF

Background: Phosphatase homologue of tensin (PTEN) is the most commonly mutated gene in prostate cancer. Bone morphogenetic proteins (BMPs) are known to promote differentiation and inhibit proliferation. Previously published reports from other organ systems led us to investigate a mechanistic relationship between PTEN and BMP signaling in prostate epithelial cells.

View Article and Find Full Text PDF

Chronic inflammation and reactivation of developmental signaling pathways are both hallmarks of adenocarcinomas. However, developmental and inflammatory processes are generally thought of as distinct and are believed to represent separate paths to carcinogenesis. Here, we show that the inflammatory cytokine interleukin-1alpha (IL-1alpha) plays a critical role in prostate development by activating insulin-like growth factor (IGF) signaling; this process is reiterated during inflammatory reactive hyperplasia to elicit epithelial proliferation.

View Article and Find Full Text PDF

Prostanoids play a major role in the nociceptive response to ureteral obstruction. Cyclooxygenases (COXs) 1 and 2 catalyze the rate-limiting step in prostanoid synthesis; COX-2 is the more inducible isoform. Previous studies in human and animal models have shown that COX-2 is highly induced during ureteral obstruction.

View Article and Find Full Text PDF

Background And Purpose: Corticosteroids have been commonly used in medical expulsive therapy for obstructing ureteral calculi. The exact mechanism of action responsible for facilitation of stone expulsion is unknown, but it is attributed to the anti-inflammatory properties of corticosteroids. Corticosteroids inhibit the production of phospholipase A2 and cyclooxygenase-2, both of which are involved in prostaglandin synthesis.

View Article and Find Full Text PDF

Introduction: The use of ketorolac in the management of painful symptoms associated with urinary stones is well supported in the literature; however, the gastric and renal adverse effects limit the dose and duration of administration. As a nonselective cyclooxygenase inhibitor, ketorolac can act locally to help control renal colic by inhibiting smooth muscle contractions and inflammation. We sought to confirm ketorolac's inhibition of ureteral contractility and determine a dose response relationship to identify an effectiveness range.

View Article and Find Full Text PDF

Prostanoid synthesis via cyclooxygenase (COX)-2 induction during urothelial stretch is central to nociception, inflammation, contractility, and proliferation caused by urinary tract obstruction. We used our primary human urothelial cell stretch model published previously to evaluate the signaling mechanisms responsible for stretch-induced COX-2 expression in urothelial cells. To determine intracytosolic calcium concentrations ([Ca(2+)](i)), primary human urothelial cells were grown on flexible membranes and loaded with Fura-2 acetoxymethyl ester (AM).

View Article and Find Full Text PDF

Objectives: Although recent evidence has supported increased ureteral stone passage with selective alpha(1)-adrenergic receptor antagonists, no mechanistic study evaluating ureteral relaxation by alpha(1) antagonism has been reported to date. We evaluated whether the alpha-blocker doxazosin reduces spontaneous, and inhibits alpha(1)-agonist-induced ureteral contractility. Additionally, alpha-receptor subtypes in normal and obstructed human ureter were analyzed.

View Article and Find Full Text PDF

Obstruction and stretch induce cyclooxygenase (COX)-2 expression and prostanoid synthesis in urinary tissues, causing pain, inflammation, hypercontractility, and cell proliferation. Our objective was to characterize acute COX-2 induction during in vivo ureteral obstruction, establish a cell culture model of urothelial stretch-induced COX-2 expression, and evaluate whether mechanotransduction could alter transcriptional and post-transcriptional regulation of COX-2. We performed laparoscopic unilateral ureteral ligation in pigs and allowed progression for 1, 2, 6, 24, or 48 h.

View Article and Find Full Text PDF