Invited for this month's cover is the joint redox flow battery team from Sandia and Los Alamos National Laboratories. The cover image shows the stylized components of a redox flow battery (RFB) in the foreground, with renewable sources of energy generation in the background. The Review itself is available at 10.
View Article and Find Full Text PDFEnergy storage is becoming the chief barrier to the utilization of more renewable energy sources on the grid. With independent service operators aiming to acquire gigawatts in the next 10-20 years, there is a large need to develop a suite of new storage technologies. Redox flow batteries (RFB) may be part of the solution if certain key barriers are overcome.
View Article and Find Full Text PDFA library-friendly approach to generate new scaffolds is decisive for the development of molecular probes, drug like molecules and preclinical entities. Here, we present the design and synthesis of novel heterocycles with spiro-2,6-dioxopiperazine and spiro-2,6-pyrazine scaffolds through a three-component reaction using various amino acids, ketones, and isocyanides. Screening of select compounds over fifty CNS receptors including G-protein coupled receptors (GPCRs), ion channels, transporters, and enzymes through the NIMH psychoactive drug screening program indicated that a novel spiro-2,6-dioxopyrazine scaffold, UVM147, displays high binding affinity at sigma-1 (σ) receptor in the nanomolar range.
View Article and Find Full Text PDFNatural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism.
View Article and Find Full Text PDFMulticomponent reactions (MCRs) are extremely popular owing to their facile execution, high atom-efficiency and the high diversity of products. MCRs can be used to access various heterocycles and highly functionalized scaffolds, and thus have been invaluable tools in total synthesis, drug discovery and bioconjugation. Traditional isocyanide-based MCRs utilize an external nucleophile attacking the reactive nitrilium ion, the key intermediate formed in the reaction of the imine and the isocyanide.
View Article and Find Full Text PDFACS Chem Neurosci
September 2015
We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays.
View Article and Find Full Text PDFTrialkylstannanes are versatile precursors for chemical transformations, including radiolabeling with a variety of halogens, particularly iodine. In the present work a convenient, Pd-mediated stannylation method is presented that can be performed in an open flask. The method is selective for aryl iodides allowing selective stannylations in the presence of other halogen atoms.
View Article and Find Full Text PDFThe formation of an unexpected heterocyclic scaffold, a benzoxazole, in a three-component reaction between a ketone, isocyanide, and 2-aminophenol was encountered. This reaction involved a benzo[b][1,4]oxazine intermediate resulting from intramolecular attack of the aminophenol hydroxyl group on the nitrilium ion. Unlike previous literature examples, the trapped nitrilium benzo[b][1,4]oxazine could readily be subjected to ring opening with bis-nucleophiles.
View Article and Find Full Text PDF