Publications by authors named "Traut R"

Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells.

View Article and Find Full Text PDF

According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease.

View Article and Find Full Text PDF

The Escherichia coli ribosomal protein L7/L12 is central to the translocation step of translation, and it is known to be flexible under some conditions. The assignment of electron density to L7/L12 was not possible in the recent 2.4 A resolution x-ray crystallographic structure (Ban, N.

View Article and Find Full Text PDF

Ribosomal proteins L2, L3 and L4, together with the 23S RNA, are the main candidates for catalyzing peptide bond formation on the 50S subunit. That L2 is evolutionarily highly conserved led us to perform a thorough functional analysis with reconstituted 50S particles either lacking L2 or harboring a mutated L2. L2 does not play a dominant role in the assembly of the 50S subunit or in the fixation of the 3'-ends of the tRNAs at the peptidyl-transferase center.

View Article and Find Full Text PDF

Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles.

View Article and Find Full Text PDF

The published C-terminal sequence of Escherichia coli 50S ribosomal protein L31, ellipsisRFNK (Brosius, J. (1978) Biochemistry 17, 501-508), differs from that predicted by the gene sequence, ellipsisRFNKRFNIPGSK (GenBank accession no. X78541).

View Article and Find Full Text PDF

During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal ("tail") domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains ("heads") that are required for binding of elongation factors to ribosomes.

View Article and Find Full Text PDF

The validation procedure for the process control system of a plant for the large scale production of human albumin from plasma fractions is described. A validation master plan is developed, defining the system and elements to be validated, the interfaces with other systems with the validation limits, a general validation concept and supporting documentation. Based on this master plan, the validation protocols are developed.

View Article and Find Full Text PDF

Five different variants of protein L7/L12, each with a single cysteine substitution at a selected site, were produced, modified with 125I-N-[4-(p-azidosalicylamido)-butyl]-3-(2'-pyridyldithio)propion amide, a radiolabeled, sulfhydryl-specific, heterobifunctional, cleavable photocross-linking reagent that transfers radiolabel to the target molecule upon reduction of the disulfide bond. The proteins were reconstituted with core particles depleted of wild type L7/L12 to yield 70 S ribosomes. Cross-linked molecules were identified and quantified by the radiolabel.

View Article and Find Full Text PDF

Escherichia coli ribosomal protein L7/L12 occurs on the large subunit as two dimers: one dimer is extended and comprises the stalk, while the second dimer is folded and occupies a site on the subunit body. A variant protein, in which all 18 amino acids of the flexible hinge region that links separate N-terminal and C-terminal domains of L7/L12 has been deleted, binds the subunit as a single dimer and does not generate stalks that are visible in electron micrographs. Monoclonal antibodies directed against each domain of the protein have been used to localize the variant in electron micrographs of 50S subunits.

View Article and Find Full Text PDF

The dimer to monomer equilibrium and interdomain separations of cysteine variants of L7/L12 have been investigated using fluorescence spectroscopy. Steady-state polarization measurements on cysteine containing variants of L7/L12, labeled with 5-(iodoacetamido)fluorescein, demonstrated dimer to monomer dissociation constants near 30 nM for variants labeled at position 33, in the N-terminal domain, and positions 63 and 89, in the C-terminal domain. A dissociation constant near 300 nM was determined for a variant labeled at position 12, in the N-terminal domain.

View Article and Find Full Text PDF

Fluorescence methods were utilized to study dynamic aspects of the 24 kDa dimeric Escherichia coli ribosomal protein L7/L12. Oligonucleotide site-directed mutagenesis was used to introduce cysteine residues at specific locations along the peptide chain, in both the C-terminal and N-terminal domains, and various sulfhydryl reactive fluorescence probes (iodoacetamido) fluorescein, IAEDANS, pyrenemethyl iodoacetate) were attached to these residues. In addition to the full-length proteins, a hinge-deleted variant and variants corresponding to the C-terminal fragment and the N-terminal fragment were also studied.

View Article and Find Full Text PDF

The fluorescent probe tetramethylrhodamine iodoacetamide was attached to cysteine residues substituted at various specific locations in full-length and deletion variants of the homodimeric Escherichia coli ribosomal protein L7/L12. Ground-state tetramethylrhodamine dimers form between the two subunits of L7/L12 depending upon the location of the probe. The formation of tetramethylrhodamine dimers caused the appearance of a new absorption band at 518 nm that was used to estimate the extent of interaction of the probes in the different protein variants.

View Article and Find Full Text PDF

Elongation factor Tu (EF-Tu), in the presence of Phe-tRNA, GMPPCP, and Poly (U), binds to 70S ribosomes at the recognition (R) site. In order to identify the ribosomal proteins adjacent to the EF-Tu occupying the R site, EF-Tu:Phe-tRNA:GMPPCP:ribosome complexes were crosslinked by modification with 2-iminothiolane and mild oxidation to form disulfide bridges between neighbouring proteins whose endogenous or introduced SH groups were appropriately located. The binding of Phe-tRNA to the ribosome was shown to be largely dependent on the presence of Poly(U).

View Article and Find Full Text PDF

It has recently been suggested that peptidyl transferase activity is primarily a property of ribosomal RNA and that ribosomal proteins may act only as scaffolding. On the other hand, evidence from both photoaffinity labeling studies and reconstitution studies suggest that protein L2 may be functionally important for peptidyl transferase. In the work reported here, we reconstitute 50S subunits in which the H229Q variant of L2 replaces L2, with all other ribosomal components remaining unchanged, and determine the catalytic and structural properties of the reconstituted subunits.

View Article and Find Full Text PDF

Five different variants of L7/L12 containing single cysteine substitutions, two in the N-terminal (NTD) and three in the C-terminal domain (CTD), were produced, modified with [125I]N-[4-(p-azidosalicylamido)butyl]-3-(2'-pyridyldithio) propionamide ([125I]APDP), a sulfhydryl-specific, heterobifunctional, cleavable photo-cross-linking reagent, and reconstituted into ribosomes. These were irradiated, the total proteins were extracted and reductively cleaved, and the cross-linked proteins were identified. The effect of zero-length disulfide cross-linking on binding and activity was also determined.

View Article and Find Full Text PDF

A variant form of Escherichia coli ribosomal protein L7/L12 that lacked residues 42 to 52 (L7/L12: delta 42-52) in the hinge region was shown previously to be completely inactive in supporting polyphenylalanine synthesis although it bound to L7/L12 deficient core particles with the normal stoichiometry of four copies per particle (Oleinikov AV, Perroud B, Wang B, Traut RR (1993) J Biol Chem, 268, 917-922). The result suggested that the hinge confers flexibility that is required for activity because the resulting bent conformation allows the distal C-terminal domain to occupy a location on the body of the large ribosomal subunit proximal to the base of the L7/L12 stalk where elongation factors bind. Factor binding to the hinge-truncated variant was tested.

View Article and Find Full Text PDF

A monoclonal antibody reactive with Sulfolobus solfataricus acidic ribosomal protein SsoL12e was prepared and employed to determine the stoichiometry of this protein in 50S ribosomal subunits by quantification of chloronaphthol-stained protein bands from immunoblots. Approximately four copies of SsoL12e were detected per 50S ribosome. This finding extends previous studies demonstrating the involvement of this protein in a multimeric protein complex in the ribosomal factor binding domain of Sulfolobus and strengthens the concept that this structural motif is a highly conserved and presumably critical feature of the ribosome.

View Article and Find Full Text PDF

Cysteine site-directed mutagenesis was used to create variants of Escherichia coli ribosomal protein L7/L12 that have single cysteine substitutions, at residues 63 or 89, located in different exposed loops in the structure of the globular C-terminal domain indicated by the crystallographic structure. That structure shows a possible dimer interaction in which the two sites of cysteine substitution appear to be too distant for disulfide bond formation. After mild oxidation in solution both of the overexpressed purified cysteine-substituted proteins formed interchain disulfide crosslinked dimers in high yield.

View Article and Find Full Text PDF

Variant forms of Escherichia coli ribosomal protein L7/L12 were constructed, overexpressed, and purified. These included proteins that deleted residues 35-52 (delta 35-52) and 42 to 52 (delta 42-52), others that contained single cysteine substitutions at residues 63 and 89, and combinations of the deletions and cysteine substitutions. Chemical modification of the introduced cysteine residues with [14C]iodoacetamide was used to radiolabel the protein variants in order to quantify their binding to the ribosome.

View Article and Find Full Text PDF

L7/L12Cys89 is a variant of L7/L12 that has a single cysteine residue located in the C-terminal domain in which Cys89 is the only cysteine residue in the protein. A cross-link between this site and the single cysteine in L10, residue 70, was formed with 1,4-di[3'-(2'-pyridyldithio)-propionamido]butane, a sulfhydryl-specific homobifunctional reagent of maximum length 16 A. It is now shown that a zero-length disulfide cross-link between L7/L12Cys89 and L10Cys70 is formed by mild oxidation with Cu2+(phenanthroline)3 of either intact ribosomes or the stable, pentameric complex (L7/L12)4-L10.

View Article and Find Full Text PDF

All large ribosomal subunits contain two dimers composed of small acidic proteins that are involved in binding elongation factors during protein synthesis. The ribosomal location of the C-terminal globular domain of the Escherichia coli ribosomal acidic protein L7/L12 has been determined by protein cross-linking with a new heterobifunctional, reversible, photoactivatable reagent, N-[4-(p-azidosalicylamido)-butyl]-3-(2'-pyridyldithio)propionamide . Properties of this reagent are described.

View Article and Find Full Text PDF

The operative treatment of fractures of the proximal end of femur with the dynamic hip screw (DHS) permits a weight-bearing stable osteosynthesis. In 5.2 years between 1985 and 1990 531 patients were treated with a DHS.

View Article and Find Full Text PDF

Oligonucleotide-directed mutagenesis was used to produce a serine 89 to cysteine 89 substitution in the C-terminal globular domain of Escherichia coli ribosomal protein L7/L12. Cys-89 represented the only cysteine residue in the protein. L7/L12Cys89 was overproduced in E.

View Article and Find Full Text PDF

Monoclonal antibodies against Escherichia coli ribosomal proteins L9 and L10 were obtained and their specificity confirmed by Western blot analysis of total ribosomal protein. This was particularly important for the L9 antibody, since the immunizing antigen mixture contained predominantly L11. Each antibody recognized both 70 S ribosomes and 50 S subunits.

View Article and Find Full Text PDF