Publications by authors named "Traudy Avila"

Growth factors and hormones have both short- and long-term regulatory effects on the functional expression of voltage gated Ca2+ (CaV) channels. In particular, it has been reported that chronic treatment with insulin upregulates T-type channel membrane expression, leading to an increase in current density in clonal pituitary GH3 cells. Though this regulatory action may result from alterations in gene expression, recent studies have demonstrated also that endosomal trafficking provides a mechanism for dynamic changes in CaV channel membrane density.

View Article and Find Full Text PDF

The activity of low voltage-activated Ca(2+) (Ca(V)3) channels is tightly coupled to neurotransmitter and hormone secretion. Previous studies have shown that Ca(V)3 channels are regulated by glucocorticoids (GCs), though the mechanism underlying channel regulation remains unclear. Here, using the pituitary GH(3) cell line as a model, we investigated whether Ca(V)3 channel expression is under the control of GCs, and if their actions are mediated by transcriptional and/or post-transcriptional mechanisms.

View Article and Find Full Text PDF

Activation of the growth hormone (GH)-secretagogue receptor (GHS-R) by synthetic GH-releasing peptides (GHRP) or its endogenous ligand (ghrelin) stimulates GH release. Though much is known about the signal transduction underlying short-term regulation, there is far less information on mechanisms that produce long-term effects. In the current report, using whole-cell patch-clamp recordings, we assessed the long-term actions of such regulatory factors on voltage-activated Ca(2+) currents in GH-secreting cells derived from a rat pituitary tumour (GC cell line).

View Article and Find Full Text PDF

In the developing skeletal muscle, fusion of myoblasts and myotube formation is a process that involves Ca2+ influx through T-type (CaV3) channels. Treatment of myoblasts with transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) decreases the number of CaV3 channels in the plasma membrane and reduces myotube formation. In the current report, we examined whether the inhibitory actions of TGF-beta1 and BMP-2 involve alterations in CaV3 mRNA expression in the myoblast C2C12 cell line.

View Article and Find Full Text PDF

An increase in intracellular Ca2+ due to voltage-gated Ca2+ (CaV) channel opening represents an important trigger for a number of second-messenger-mediated effects ranging from neurotransmitter release to gene activation. Ca2+ entry occurs through the principal pore-forming protein but several ancillary subunits are known to more precisely tune ion influx. Among them, the CaVbeta subunits are perhaps the most important, given that they largely influence the biophysical and pharmacological properties of the channel.

View Article and Find Full Text PDF