Publications by authors named "Traude H Beilharz"

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition.

View Article and Find Full Text PDF

Macrophages curtail the proliferation of the pathogen within human body niches. Within macrophages, adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is a potent transcription factor necessary for life whose activity is corrupted in diverse diseases, including cancer. STAT3 biology was presumed to be entirely dependent on its activity as a transcription factor until the discovery of a mitochondrial pool of STAT3, which is necessary for normal tissue function and tumorigenesis. However, the mechanism of this mitochondrial activity remained elusive.

View Article and Find Full Text PDF

Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation.

View Article and Find Full Text PDF

Fungal pathogens overcome antifungal drug therapy by classic resistance mechanisms, such as increased efflux or changes to the drug target. However, even when a fungal strain is susceptible, trailing or persistent microbial growth in the presence of an antifungal drug can contribute to therapeutic failure. This trailing growth is caused by adaptive physiological changes that enable the growth of a subpopulation of fungal cells in high drug concentrations, in what is described as drug tolerance.

View Article and Find Full Text PDF

Fungal infections are a global threat, but treatments are limited due to a paucity in antifungal drug targets and the emergence of drug-resistant fungi such as Candida auris. Metabolic adaptations enable microbial growth in nutrient-scarce host niches, and they further control immune responses to pathogens, thereby offering opportunities for therapeutic targeting. Because it is a relatively new pathogen, little is known about the metabolic requirements for C.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms' alternative 3'-end. This review discusses the implications of alternative polyadenylation in using other organisms to draw inferences.

View Article and Find Full Text PDF

Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3' untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3' end formation factors, which revealed 3'UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3'UTRs. We show that the anti-cancer drug cordycepin, 3' deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites.

View Article and Find Full Text PDF

Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs), including dyskeratosis congenita (DC), are a group of rare inherited diseases characterized by very short telomeres. Mutations in the components of the enzyme telomerase can lead to insufficient telomere maintenance in hematopoietic stem cells, resulting in the bone marrow failure that is characteristic of these disorders. While an increasing number of genes are being linked to TBDs, the causative mutation remains unidentified in 30-40% of patients with DC.

View Article and Find Full Text PDF

The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles.

View Article and Find Full Text PDF

Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress.

View Article and Find Full Text PDF

Mitochondrial complex I harbors 7 mitochondrial and 38 nuclear-encoded subunits. Its biogenesis requires the assembly and integration of distinct intermediate modules, mediated by numerous assembly factors. The mitochondrial complex I intermediate assembly (MCIA) complex, containing assembly factors NDUFAF1, ECSIT, ACAD9, and TMEM126B, is required for building the intermediate ND2-module.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) determines stability, localization and translation potential of the majority of mRNA in eukaryotic cells. The heterodimeric mammalian cleavage factor II (CF II) is required for pre-mRNA 3' end cleavage and is composed of the RNA kinase hClp1 and the termination factor hPcf11; the latter protein binds to RNA and the RNA polymerase II carboxy-terminal domain. Here, we used siRNA mediated knockdown and poly(A) targeted RNA sequencing to analyze the role of CF II in gene expression and APA in estrogen receptor positive MCF7 breast cancer cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes, due to the high propensity to develop distant metastases. Hence, new molecular targets for therapeutic intervention are needed for TNBC. We recently conducted a rigorous phenotypic and genomic characterization of four isogenic populations of MDA-MB-231 human triple-negative breast cancer cells that possess a range of intrinsic spontaneous metastatic capacities in vivo, ranging from nonmetastatic (MDA-MB-231_ATCC) to highly metastatic to lung, liver, spleen and spine (MDA-MB-231_HM).

View Article and Find Full Text PDF

The noncoding elements of an mRNA influence multiple aspects of its fate. For example, 3'-UTRs serve as physical and sequence-based information hubs that direct the time, place, and level of translation of the protein encoded in cis, but often also have additional roles in trans. Understanding the information content of 3'-UTRs has been a challenge.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) and its application to RNA (RNA-seq) has opened up multiple aspects of RNA processing to deep transcriptome-wide analysis at nucleotide resolution. This has been useful in delineating the transcribed areas of the genome, and in quantitation of RNA isoforms. Such isoforms can diversify the regulatory repertoire of mRNAs.

View Article and Find Full Text PDF

Differential gene expression analysis may discover a set of genes too large to easily investigate, so a means of ranking genes by biological interest level is desired. p values are frequently abused for this purpose. As an alternative, we propose a method of ranking by confidence bounds on the log fold change, based on the previously developed TREAT test.

View Article and Find Full Text PDF

The yeast Candida albicans colonizes several sites in the human body and responds to metabolic signals in commensal and pathogenic states. The yeast-to-hyphae transition correlates with virulence, but how metabolic status is integrated with this transition is incompletely understood. We used the putative mitochondrial fission inhibitor mdivi-1 to probe the crosstalk between hyphal signaling and metabolism.

View Article and Find Full Text PDF

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor mRNA to facilitate its nucleo-cytoplasmic export independent of splicing.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes. Hence, new molecular targets for therapeutic intervention are necessary. Analyses of panels of human or mouse cancer lines derived from the same individual that differ in their cellular phenotypes but not in genetic background have been instrumental in defining the molecular players that drive the various hallmarks of cancer.

View Article and Find Full Text PDF

To fight infections, macrophages undergo a metabolic shift whereby increased glycolysis fuels antimicrobial inflammation and killing of pathogens. Here we demonstrate that the pathogen Candida albicans turns this metabolic reprogramming into an Achilles' heel for macrophages. During Candida-macrophage interactions intertwined metabolic shifts occur, with concomitant upregulation of glycolysis in both host and pathogen setting up glucose competition.

View Article and Find Full Text PDF

Endogenous microRNAs (miRNAs) often exist as multiple isoforms (known as "isomiRs") with predominant variation around their 3'-end. Increasing evidence suggests that different isomiRs of the same family can have diverse functional roles, as recently demonstrated with the example of miR-222-3p 3'-end variants. While isomiR levels from a same miRNA family can vary between tissues and cell types, change of templated isomiR stoichiometry to stimulation has not been reported to date.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) and PIWI proteins play a crucial role in germ cells by repressing transposable elements and regulating gene expression. In Drosophila, maternal piRNAs are loaded into the embryo mostly bound to the PIWI protein Aubergine (Aub). Aub targets maternal mRNAs through incomplete base-pairing with piRNAs and can induce their destabilization in the somatic part of the embryo.

View Article and Find Full Text PDF