Publications by authors named "Trastoy J"

The normal-state conductivity and superconducting critical temperature of oxygen-deficient YBa_{2}Cu_{3}O_{7-δ} can be persistently enhanced by illumination. Strongly debated for years, the origin of those effects-termed persistent photoconductivity and photosuperconductivity (PPS)-has remained an unsolved critical problem, whose comprehension may provide key insights to harness the origin of high-temperature superconductivity itself. Here, we make essential steps toward understanding PPS.

View Article and Find Full Text PDF

Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers.

View Article and Find Full Text PDF

Memristors, a cornerstone for neuromorphic electronics, respond to the history of electrical stimuli by varying their electrical resistance across a continuum of states. Much effort has been recently devoted to developing an analogous response to optical excitation. Here we realize a novel tunnelling photo-memristor whose behaviour is bimodal: its resistance is determined by the dual electrical-optical history.

View Article and Find Full Text PDF

Resistive switching effects offer new opportunities in the field of conventional memories as well as in the booming area of neuromorphic computing. Here the authors demonstrate memristive switching effects produced by a redox-driven oxygen exchange in tunnel junctions based on NdNiO , a strongly correlated electron system characterized by the presence of a metal-to-insulator transition (MIT). Strikingly, a strong interplay exists between the MIT and the redox mechanism, which on the one hand modifies the MIT itself, and on the other hand radically affects the tunnel resistance switching and the resistance states' lifetime.

View Article and Find Full Text PDF

Arrays of superconducting quantum interference devices (SQUIDs) are highly sensitive magnetometers that can operate without a flux-locked loop, as opposed to single SQUID magnetometers. They have no source of ambiguity and benefit from a larger bandwidth. They can be used to measure absolute magnetic fields with a dynamic range scaling as the number of SQUIDs they contain.

View Article and Find Full Text PDF
Article Synopsis
  • Strong electron repulsion in solids can lead to a phenomenon called the "Mott" metal-to-insulator transition (MIT), where electrons transform from a mobile to a localized state.
  • Understanding this transition has been difficult for over 50 years due to challenges in observing both electronic states.
  • Researchers used angle-resolved photoemission spectroscopy (ARPES) to demonstrate that in vanadium oxide (VO), increasing temperature causes the itinerant conduction band to vanish while a quasi-localized state shifts to higher binding energies.
View Article and Find Full Text PDF

In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory.

View Article and Find Full Text PDF

Recent experiments have shown that proximity with high-temperature superconductors induces unconventional superconducting correlations in graphene. Here, we demonstrate that those correlations propagate hundreds of nanometers, allowing for the unique observation of d-wave Andreev-pair interferences in YBa_{2}Cu_{3}O_{7}-graphene devices that behave as a Fabry-Perot cavity. The interferences show as a series of pronounced conductance oscillations analogous to those originally predicted by de Gennes-Saint-James for conventional metal-superconductor junctions.

View Article and Find Full Text PDF

The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme-a direct contact between a metal and an oxide-through a different mechanism: a reversible redox reaction that modifies the oxide's ground-state.

View Article and Find Full Text PDF
Article Synopsis
  • Resistive switching allows devices to alter their resistance with an electric field, playing a key role in new tech like neuromorphic computing and resistive memories.
  • Threshold firing, a promising type of resistive switching found in Mott insulators, occurs when a material transitions from an insulating to a conducting state after reaching a certain voltage.
  • Research shows that Mott nanodevices can 'remember' previous resistive switching events even after returning to the insulating state, and can be re-triggered using lower voltages for an extended period, highlighting a new form of volatile memory with various potential applications.
View Article and Find Full Text PDF

The interdependences of different phase transitions in Mott materials are fundamental to the understanding of the mechanisms behind them. One of the most important relations is between the ubiquitous structural and electronic transitions. Using IR spectroscopy, optical reflectivity, and x-ray diffraction, we show that the metal-insulator transition is coupled to the structural phase transition in V_{2}O_{3} films.

View Article and Find Full Text PDF

In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence. In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization, for solving complex problems with small networks.

View Article and Find Full Text PDF

We have discovered an unexpected correlation between the operational temperature of the brain and cognitive abilities across a wide variety of animal species. This correlation is extracted from available data in the literature of the temperature range Δ T at which an animal's brain can operate and its encephalization quotient EQ, which can be used as a proxy for cognitive ability. In particular, we found a power-law dependence between Δ T and EQ.

View Article and Find Full Text PDF

We report on a strain-induced and temperature dependent uniaxial anisotropy in VO/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal. X-ray diffraction and reciprocal space maps identify the in-plane crystalline axes of the VO; atomic force and scanning electron microscopy reveal oriented rips in the film microstructure. Quasi-static magnetometry and dynamic ferromagnetic resonance measurements identify a uniaxial magnetic easy axis along the rips.

View Article and Find Full Text PDF

The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L.

View Article and Find Full Text PDF

The problem of an ensemble of repulsive particles on a potential-energy landscape is common to many physical systems and has been studied in multiple artificial playgrounds. However, the latter usually involve fixed energy landscapes, thereby impeding in situ investigations of the particles' collective response to controlled changes in the landscape geometry. Here, we experimentally realize a system in which the geometry of the potential-energy landscape can be switched using temperature as the control knob.

View Article and Find Full Text PDF

The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system.

View Article and Find Full Text PDF