Publications by authors named "Trappe V"

Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an ensemble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory of individual tracers is ideal for homogeneous materials that do not interact with the particles. By contrast, the characterization of heterogeneous, micro-structured materials or those where particles interact directly with the medium requires a two-particle analysis that characterizes correlations between the trajectories of distinct particle pairs.

View Article and Find Full Text PDF

Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with large-scale computer simulations, exploring the behavior of jammed suspensions of soft repulsive particles.

View Article and Find Full Text PDF
Article Synopsis
  • Soft amorphous materials, like clays and gels, are common viscoelastic solids that can transform from solid to liquid under deformation, altering their microstructure.
  • A workshop at the Lorentz Center in Leiden from January 9 to 13, 2023, focused on this yielding transition in these materials.
  • The resulting manuscript highlights key insights and open questions from discussions at the workshop, pointing to future experimental and theoretical challenges in the field.
View Article and Find Full Text PDF

We show that the slow viscoelastic response of a foam is that of a power-law fluid with a terminal relaxation. Investigations of the foam mechanics in creep and recovery tests reveal that the power-law contribution is fully reversible, indicative of a delayed elastic response. We demonstrate how this contribution fully accounts for the non-Maxwellian features observed in all tests, probing the linear mechanical response function.

View Article and Find Full Text PDF

Purified collagen possesses weak mechanical properties, hindering its broad application in tissue engineering. Strategies based on manipulating the hydrogel to induce fiber formation or incorporate nanomaterials have been proposed to overcome this issue. Herein, we use a microfluidic device to fabricate, for the first time, collagen hydrogels with aligned and oriented fibers doped with gold nanoparticles and carbon nanotubes.

View Article and Find Full Text PDF

A potential repair alternative to restoring the mechanical properties of lightweight fiber-reinforced polymer (FRP) structures is to locally patch these areas with scarf joints. The effects of such repair methods on the structural integrity, however, are still largely unknown. In this paper, the mechanical property restoration, failure mechanism, and influence of fiber orientation mismatch between parent and repair materials of 1:50 scarf joints are studied on monolithic glass fiber-reinforced polymer (GFRP) specimens under tensile load.

View Article and Find Full Text PDF

Intermittent dynamics driven by internal stress imbalances in disordered systems is a fascinating yet poorly understood phenomenon. Here, we study it for a coarsening foam. By exploiting differential dynamic microscopy and particle tracking we determine the dynamical characteristics of the foam at different ages in reciprocal and direct space, respectively.

View Article and Find Full Text PDF

We explore the evolution of the mechanical properties of a coarsening foam containing colloidal particles that undergo a sol-gel transition in the continuous phase. This enables us to investigate the impact of elasto-capillarity on foam mechanics over a wide range of elasto-capillary numbers. Right after initiating aggregation the foam mechanics is predominantly determined by the elasticity of the bubbles, while the contributions of the continuous phase become dominant as the colloidal particles form a gel.

View Article and Find Full Text PDF

We introduce a theoretical approach to describe structural correlations among charged permeable spheres at finite particle concentrations. This theory explicitly accounts for correlations among microions and between microions and macroions and allows for the proposal of an effective interaction among macroions that successfully captures structural correlations observed in poly-N-isopropyl acrylamide microgel systems. In our description the bare charge is fixed and independent of the microgel size, the microgel concentration, and the ionic strength, which contrasts with results obtained using linear response approximations, where the bare charge needs to be adapted to properly account for microgel correlations obtained at different conditions.

View Article and Find Full Text PDF

We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τ_{α} of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τ_{α} on approaching the glass transition is independent of particle softness.

View Article and Find Full Text PDF

We explore the electrostatic properties of poly-N-isopropyl acrylamide microgels in dilute, quasi-de-ionized dispersions and show that the apparent net charge of these thermosensitive microgels is an increasing function of their size, the size being conveniently varied by temperature. Our experimental results obtained in a combination of light scattering, conductivity, and mobility experiments are consistent with those obtained in Poisson-Boltzmann cell model calculations, effectively indicating that upon shrinking the number of counterions entrapped within the microgels increases. Remarkably, this behavior shows that the electrostatic energy per particle remains constant upon swelling or deswelling the microgel, resulting in a square root dependence of the net charge on the particle radius.

View Article and Find Full Text PDF

We investigate the phase behaviour of aqueous dispersions of poly-N-isopropyl acrylamide (PNiPAM) microgels above their lower critical solution temperature (LCST) and find that beyond a well-defined concentration the systems exhibit a peculiar behaviour: the microgels assemble into space-spanning gels that shrink in time while maintaining the shape of the container in which they have been formed. Over a wide range of concentrations this shrinking behaviour is independent of PNiPAM concentration, but systematically depends on temperature in a temperature range significantly exceeding the LCST. The overall shrinking characteristics are consistent with those expected for scaffolds made of materials that exhibit thermal contraction.

View Article and Find Full Text PDF

We investigate the co-nonsolvency of poly-N-isopropyl acrylamide (PNiPAM) in different water-alcohol mixtures and show that this phenomenon is due to two distinct solvation contributions governing the phase behavior of PNiPAM in the water-rich and alcohol-rich regime respectively. While hydrophobic hydration is the predominant contribution governing the phase behavior of PNiPAM in the water-rich regime, the mixing contributions governing the phase behavior of classical polymer solutions determine the phase behavior of PNiPAM in the alcohol-rich regime. This is evidenced by distinct scaling relations denoting the energetic state of the aqueous medium as a key parameter for the phase behavior of PNiPAM in the water-rich regime, while the volume fractions of respectively water, alcohol and PNiPAM become relevant parameters in the alcohol-rich regime.

View Article and Find Full Text PDF

Polarised microscopy is shown to be a powerful alternative to light scattering for the determination of the viscoelasticity of aligned nematic liquid crystals. We perform experiments in a wide range of temperatures by using an adapted version of the recently introduced differential dynamic microscopy technique, which enables us to extract scattering information directly from the microscope images. A dynamic analysis of the images acquired in different geometries provides the splay, twist and bend viscoelastic ratios.

View Article and Find Full Text PDF

The enthalpically favoured hydration of hydrophobic entities, termed hydrophobic hydration, impacts the phase behaviour of numerous amphiphiles in water. Here, we show experimental evidence that hydrophobic hydration is strongly determined by the mean energetics of the aqueous medium. We investigate the aggregation and collapse of an amphiphilic polymer, poly-N-isopropyl acrylamide (PNiPAM), in aqueous solutions containing small amounts of alcohol and find that the thermodynamic characteristics defining the phase transitions of PNiPAM evolve relative to the solvent composition at which the excess mixing enthalpy of the water/alcohol mixtures becomes minimal.

View Article and Find Full Text PDF

We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong dependence on volume fraction. Considering the large difference between the protein size and the characteristic length of the network we model the gels as porous media and show that the high and low frequency elastic moduli can be respectively attributed to stretching and bending modes. The unexpected decoupling of the two modes in the frequency domain is attributed to the length scale involved: while stretching mainly relates to the relative displacement of two particles, bending involves the deformation of a strand with a thickness of the order of a thousand particle diameters.

View Article and Find Full Text PDF

We present a series of experimental results that disclose the crucial role of ionic strength and partial volume fractions in the control of the phase behaviour of binary protein mixtures. Our findings can be understood as that the ionic strength determines the relative contribution of the entropy of the protein counter-ions to the overall thermodynamics of the system. Associative phase separation and crystallization observed at, respectively, low and high ionic strength are suppressed at intermediate salt concentrations, where the entropy gain upon releasing the counter-ions from the double layer of the proteins is negligible and the entropy loss upon confining the counter-ions within the protein crystal phase significant.

View Article and Find Full Text PDF

The rheology of milk powder suspensions is investigated up to very high concentrations, where structural arrest occurs. The main component of the milk powder investigated is casein, so that the suspensions can be regarded as casein suspensions. Four concentration regimes are identified.

View Article and Find Full Text PDF

We investigate dynamical heterogeneities in the collective relaxation of a concentrated microgel system, for which the packing fraction can be conveniently varied by changing the temperature. The packing fraction-dependent mechanical properties are characterized by a fluid-solid transition, where the system properties switch from a viscous to an elastic low-frequency behaviour. Approaching this transition from below, we find that the range xi of spatial correlations in the dynamics increases.

View Article and Find Full Text PDF

We describe the use of a bright-field microscope for dynamic light scattering experiments on weakly scattering samples. The method is based on collecting a time sequence of microscope images and analyzing them in the Fourier space to extract the characteristic time constants as a function of the scattering wave vector. We derive a theoretical model for microscope imaging that accounts for (a) the three-dimensional nature of the sample, (b) the arbitrary coherence properties of the light source, and (c) the effect of the finite numerical aperture of the microscope objective.

View Article and Find Full Text PDF

We introduce a new dynamic light scattering method, termed photon correlation imaging, which enables us to resolve the dynamics of soft matter in space and time. We demonstrate photon correlation imaging by investigating the slow dynamics of a quasi-two-dimensional coarsening foam made of highly packed, deformable bubbles and a rigid gel network formed by dilute, attractive colloidal particles. We find the dynamics of both systems to be determined by intermittent rearrangement events.

View Article and Find Full Text PDF

Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics.

View Article and Find Full Text PDF

We demonstrate the use of an ordinary white-light microscope for the study of the q-dependent dynamics of colloidal dispersions. Time series of digital video images are acquired in bright field with a fast camera, and image differences are Fourier analyzed as a function of the time delay between them. This allows for the characterization of the particle dynamics independent of whether or not they can be resolved individually.

View Article and Find Full Text PDF

We demonstrate a new design for a light-scattering microscope that is convenient to use and that allows simultaneous imaging and light scattering. The design is motivated by the growing use of thermal fluctuations to probe the viscoelastic properties of complex inhomogeneous environments. We demonstrate measurements of an optically nonergodic sample, one of the most challenging light-scattering applications.

View Article and Find Full Text PDF

We use time-resolved x-ray photon correlation spectroscopy to investigate the slow dynamics of colloidal gels made of moderately attractive carbon black particles. We show that the slow dynamics is temporally heterogeneous and quantify its fluctuations by measuring the variance chi of the instantaneous intensity correlation function. The amplitude of dynamical fluctuations has a nonmonotonic dependence on scattering vector q, in stark contrast with recent experiments on strongly attractive colloidal gels [Duri and Cipelletti, Europhys.

View Article and Find Full Text PDF