Transient or persistent immunosuppression is a known risk factor for morbidity and mortality in critically ill patients. Aim of the present study is to evaluate the lymphopenia in patients admitted to the Emergency Unit of AOU Policlinico Umberto I, to investigate its prevalence at admission and the persistence during hospitalization until discharge. Possible correlations were evaluated between lymphopenia, diagnosis of admission, comorbidities and chronic treatments.
View Article and Find Full Text PDFBackground: Quarantine was one of the strategies adopted by governments against the spread of COVID-19. This restriction has caused an increase in sedentary behaviors and a decrease in the practice of physical activity (PA), with a consequent negative impact on lifestyle both in healthy people and in those who need constant practice of PA to combat diseases, such as patients suffering from neuromuscular diseases (NMDs). Hence, this study aimed to compare PA levels among patients with NMD during and after quarantine.
View Article and Find Full Text PDFUltrashort Bessel beams have been used in this work to study the response of a 430-μm-thick monocrystalline sapphire sample to laser-matter interaction when injecting the beam orthogonally through the whole sample thickness. We show that with a 12° Bessel beam cone angle, we are able to internally modify the material and generate tailorable elongated microstructures while preventing the formation of surface cracks, even in the picosecond regime, contrary to what was previously reported in the literature. On the other hand, by means of Bessel beam machining combined with a trepanning technique where very high energy pulses are needed, we were able to generate 100 μm diameter through-holes, eventually with negligible cracks and very low taper angles thanks to an optimization achieved by using a 60-μm-thick layer of Kapton Polyimide removable tape.
View Article and Find Full Text PDFMicro-drilling transparent dielectric materials by using non-diffracting beams impinging orthogonally to the sample can be performed without scanning the beam position along the sample thickness. In this work, the laser micromachining process, based on the combination of picosecond pulsed Bessel beams with the trepanning technique, is applied to different transparent materials. We show the possibility to create through-apertures with diameter on the order of tens of micrometers, on dielectric samples with different thermal and mechanical characteristics as well as different thicknesses ranging from two hundred to five hundred micrometers.
View Article and Find Full Text PDFNonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth.
View Article and Find Full Text PDFSynthesis of 2,3-dihydrobenzo[f][1,2,5]thiadiazepin-4(5H)-one 1,1-dioxides from polymer-supported α-amino acids is described herein. Different α-amino acids immobilized on Wang resin were sulfonylated with various 2-nitrobenzenesulfonyl chlorides. The resulting 2-nitrobenzenesulfonamides were alkylated with alcohols according to the Fukuyama-Mitsunobu procedure.
View Article and Find Full Text PDFIn this paper we illustrate how the localization of the stationary two-dimensional solution of the propagation equation strongly depends on the features of its spatio-temporal spectral bandwidth. We especially investigate the role of the ultra-broad temporal support and of the spatial bandwidth of the spectrum on the high localization in one spatial dimension of "Bessel-like" or "blade-like" beams, quasi-stationarily propagating in normally dispersive materials, and potentially interesting for microfabrication applications.
View Article and Find Full Text PDFThis work presents the experimental observation of the nonfactorable near-field spatiotemporal correlation of ultrabroadband twin beams generated by parametric down-conversion, in an interferometric-type experiment using sum frequency generation, where both the temporal and the spatial degrees of freedom of parametric down-conversion light are controlled with high resolution. The revealed correlation is skewed in space-time in accordance with the X structure predicted by the theory.
View Article and Find Full Text PDFThe suppression of the individual Υ(nS) states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb and pp data sets used in the analysis correspond to integrated luminosities of 150 μb(-1) and 230 nb(-1), respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV.
View Article and Find Full Text PDFWe demonstrate the ultranarrow temporal correlation (6 fs full width half maximum) of twin beams generated by parametric down-conversion by using its reverse process, i.e., sum-frequency generation.
View Article and Find Full Text PDFThe features of scattered and transmitted light by dilute suspensions of transparent submicron particles are investigated both in the spectral and in the perceived colorimetric domains, as a function of effective particle diameter D, particle-host refractive-index mismatch m, and scattering angle θ. Our results show that the wavelength λ-dependence of the scattering and extinction cross sections remains quite similar well beyond the Rayleigh regime up to particle sizes of a few hundreds nm, but only for specific scattering angles that depend on D and m, and tend to 90° on approaching the Rayleigh regime. Close to this limit (D/λ<<1), a simple criterion that relates the perceived scattering color at θ=90° and the ratio of the sample extinction coefficients at two properly selected wavelengths is demonstrated.
View Article and Find Full Text PDFIn this paper we show how after the generation of parametric down-conversion radiation (PDC) in the very high gain pulsed regime, we are able to reconstruct the pump via up-conversion of the twin beams originated from that PDC process. The peculiarity of the experiment is the ultra-broad spectral and angular bandwidth sent into the process of sum frequency mixing thanks to an achromatic imaging technique from the exit face of the PDC crystal using off-axis parabolic mirrors. The recorded spectra presented illustrate the high visibility recombination of the intense phase-conjugated signal and idler beams and pave the way for the investigation of both the spatial and temporal properties of the near field biphoton amplitude.
View Article and Find Full Text PDFWe report on the generation of sub-30-fs near-IR light pulses by means of broadband four-wave parametric amplification in fused silica. This is achieved by frequency downconversion of visible broadband pulses provided by a commercial blue-pumped beta-barium borate crystal-based noncollinear optical parametric amplifier. The proposed method produces the IR idler pulses with energy up to ∼20 μJ and tunable in wavelength from 1 to 1.
View Article and Find Full Text PDFWe report on a space-time compression technique allowing for complete and independent control of the longitudinal dynamics and of the transverse pulse localization by means of spatial beam shaping. We experimentally observe both strong temporal compression and high transverse localization, of the order of a few wavelengths, along free-space propagation.
View Article and Find Full Text PDFWe demonstrate the validity of the Shackled-frequency-resolved-optical-gating technique for the complete characterization, both in space and in time, of ultrashort optical pulses that present strong angular dispersion. Combining a simple imaging grating with a Hartmann-Shack sensor and standard frequency-resolved-optical-gating detection at a single spatial position, we are able to retrieve the full spatiotemporal structure of a tilted pulse.
View Article and Find Full Text PDFWe study the generation of intense terahertz pulses produced by two-color laser pulse filamentation in air. We tailor the filamentation process and the produced plasma strings and study how the generated terahertz field is modified. An important terahertz pulse shortening is found for plasma strings with uniform electron density.
View Article and Find Full Text PDFThe question that we are addressing concerns the possibility of creating a zeroth-order Bessel-like beam that spirals around the axis of propagation. The analytical features of the beam propagation are studied theoretically. Approximations to such a light field can be experimentally realized by using an axicon and a hologram.
View Article and Find Full Text PDFBy means of a time-resolved, shadowgraphic method we observed directly the development of the pulse-splitting dynamics of a femtosecond laser pulse propagating in the filamentary regime in water. For the first time to our knowledge, the relative splitting velocity was measured. We compare the experimental data with numerical simulations.
View Article and Find Full Text PDFWe propose a new experimental technique, which allows for a complete characterization of ultrashort optical pulses both in space and in time. Combining the well-known Frequency-Resolved-Optical-Gating technique for the retrieval of the temporal profile of the pulse with a measurement of the near-field made with an Hartmann-Shack sensor, we are able to retrieve the spatiotemporal amplitude and phase profile of a Bessel-X pulse. By following the pulse evolution along the propagation direction we highlight the superluminal propagation of the pulse peak.
View Article and Find Full Text PDFVisualization of the energy density flux gives a unique insight into the propagation properties of complex ultrashort pulses. This analysis, formerly relegated to numerical investigations, is here shown to be an invaluable experimental diagnostic tool. By retrieving the spatio-temporal amplitude and phase we experimentally obtain the energy density flux within complex ultrashort pulses generated by filamentation in a nonlinear Kerr medium.
View Article and Find Full Text PDFThe formation of long stationary filaments resulting in uniform high density plasma strings in air using short pulse UV laser Bessel beams is shown. The length and the electron density of the plasma strings can be easily tuned by adjusting the conical Bessel wavefront angle. It is shown that in this regime the length of the plasma string can be extended over meter-long scales without any compromise in the string uniformity or any temporal evolution of the filamented laser pulse.
View Article and Find Full Text PDFPlanar glass membrane fibers (PGMFs) are of current interest owing to the fact that they combine the interesting dispersive properties of fibers with diffraction in one unbound transverse dimension. We study supercontinuum (SC) spectra generated in PGMFs and show that the underlying dynamics has similarities to bulk medium. At the same time, the rich dispersion properties of PGMFs open up new possibilities, including SC spectral shapes that do not occur in natural bulk media.
View Article and Find Full Text PDFWe exploit cross-phase modulation by a strong driving pulse onto a weaker probe pulse at a different wavelength to induce the formation of an X wave possessing the typical nondispersive and nondiffractive propagation properties.
View Article and Find Full Text PDFWe propose an experimental technique that allows for a complete characterization of the amplitude and phase of optical pulses in space and time. By the combination of a spatially resolved spectral measurement in the near and far fields and a frequency-resolved optical gating measurement, the electric field of the pulse is obtained through a fast, error-reduction algorithm.
View Article and Find Full Text PDF