Publications by authors named "Trantas E"

Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest.

View Article and Find Full Text PDF

Agriculture plays a pivotal role in food security and food security is challenged by pests and pathogens. Due to these challenges, the yields and quality of agricultural production are reduced and, in response, restrictions in the trade of plant products are applied. Governments have collaborated to establish robust phytosanitary measures, promote disease surveillance, and invest in research and development to mitigate the impact on food security.

View Article and Find Full Text PDF

This study explores the biological effects of hydroxytyrosol (HT), produced by the metabolic engineering of , in a series of and experiments. In particular, a metabolically engineered strain capable of producing HT was constructed and utilized. HEK293 and HeLa cells were exposed to purified HT to determine non-toxic doses that can offer protection against oxidative stress (activation of Nrf2/HO-1 signaling pathway).

View Article and Find Full Text PDF

The contribution of vine cultivation to human welfare as well as the stimulation of basic social and cultural features of civilization has been great. The wide temporal and regional distribution created a wide array of genetic variants that have been used as propagating material to promote cultivation. Information on the origin and relationships among cultivars is of great interest from a phylogenetics and biotechnology perspective.

View Article and Find Full Text PDF

Several natural compounds have been explored as immune-boosting, antioxidant and anti-inflammatory dietary supplements. Amongst them, hydroxytyrosol, a natural antioxidant found in olive products, and endemic medicinal plants have attracted the scientific community's and industry's interest. We investigated the safety and biological activity of a standardised supplement containing 10 mg of hydroxytyrosol synthesized using genetically modified strains and equal amounts (8.

View Article and Find Full Text PDF

ssp. (domesticated grapevine) includes thousands of cultivars, which are classified according to their main uses, as wines, fresh fruits or dried raisins and sultanas since ancient times. Evidence showed that Crete grapevine cultivars and winemaking date back to 2300 BC.

View Article and Find Full Text PDF

Determining the optimum harvest time is a significant factor affecting the quality of the grapes and the wine. Monitoring the evolution of grapes' physicochemical properties and phenolic maturity during ripening could be a valuable tool for determining the optimum harvest time. In this study, the total phenolic content, antioxidant activity, flavonols, flavanols, anthocyanins and resveratrol content were determined during the last weeks of ripening for the white cultivars Vilana and Vidiano, as well as for the red cultivars Kotsifali and Mandilari ( L.

View Article and Find Full Text PDF

In recent years, significant efforts to produce healthier wines has led to the replacement or reduction of the addition of sulfites, using alternative substances or techniques. Resveratrol and related biophenols seem to be of great interest, since beyond their protective nature and contrary to sulfites they can positively affect consumer health. These bioactive phytochemicals are naturally produced in grapes as evolutionary acquired mechanisms against pathogens and UV irradiation.

View Article and Find Full Text PDF

One of the most abundant phenolic compounds traced in olive tissues is hydroxytyrosol (HT), a molecule that has been attributed with a pile of beneficial effects, well documented by many epidemiological studies and thus adding value to products containing it. Strong antioxidant capacity and protection from cancer are only some of its exceptional features making it ideal as a potential supplement or preservative to be employed in the nutraceutical, agrochemical, cosmeceutical, and food industry. The HT biosynthetic pathway in plants (e.

View Article and Find Full Text PDF

The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses.

View Article and Find Full Text PDF

Studies of the species composition, seasonal appearance, and abundance of Auchenorrhyncha in olive crops is of paramount importance to reduce the potential of Xylella fastidiosa to invade new areas. As similar investigations had not previously been conducted in Greece, extensive surveys were undertaken in olive orchards located in three of the most important regions for olive production in central Greece (Fthiotida), south-central Greece (Attica), and southern Greece (Chania). Surveys took place over a 13-mo period, using Malaise traps examined on a monthly basis.

View Article and Find Full Text PDF

Olive tree is one of the most valuable crops cultivated for its oil that is rich in antioxidants. The beneficial effects of oleuropein and hydroxytyrosol (HT), the most abundant and the most powerful antioxidant respectively, as well as tyrosol, HT's precursor molecule, are well studied however their biosynthetic pathways are not yet clarified. The transcriptome analysis of the young olive fruit, cultivar "Koroneiki", revealed transcripts of all the enzymes used to reconstitute the biosynthetic pathway of tyrosol and HT in other organisms.

View Article and Find Full Text PDF

Cyclic lipopeptides (CLPs) are considered as some of the most important secondary metabolites in different plant-associated bacteria, thanks to their antimicrobial, cytotoxic, and surfactant properties. In this study, our aim was to investigate the role of the Quorum Sensing (QS) system, PcoI/PcoR, and the LuxR-type transcriptional regulator RfiA in CLP production in the phytopatogenic bacterium, based on our previous work where we reported that the and mutants were devoid of the CLPs cormycin and corpeptin production. Due to the close genetic link between the QS system and the RfiA ( is co-transcribed with ), it was difficult to ascertain the specific regulatory role in the expression of target genes.

View Article and Find Full Text PDF

Natural metabolic pathways are dynamically regulated at the transcriptional, translational, and protein levels. Despite this, traditional pathway engineering has relied on static control strategies to engender changes in metabolism, most likely due to ease of implementation and perceived predictability of design outcome. Increasingly in recent years, however, metabolic engineers have drawn inspiration from natural systems and have begun to harness dynamically controlled regulatory machinery to improve design of engineered microorganisms for production of specialty and commodity chemicals.

View Article and Find Full Text PDF

The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents.

View Article and Find Full Text PDF

As a result of the discovery that flavonoids are directly or indirectly connected to health, flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of both the industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc. Subsequently, in the past few years, flavonoids became a top story in the pharmaceutical industry, which is continually seeking novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a selective flavonoid.

View Article and Find Full Text PDF

Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants.

View Article and Find Full Text PDF

In 2006, a disease was observed on two artichoke (Cynara scolymus L. cv. Lardati) fields in Crete, Greece, covering ~2 ha.

View Article and Find Full Text PDF

The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P.

View Article and Find Full Text PDF

Chemical or biological synthesis of plant secondary metabolites has attracted increasing interest due to their proven or assumed beneficial properties and health promoting effects. Resveratrol, a stilbenoid, naringenin, a flavanone, genistein, an isoflavone, and the flavonols kaempferol and quercetin have been shown to possess high nutritional and agricultural value. Four metabolically engineered yeast strains harboring plasmids with heterologous genes for enzymes involved in the biosynthesis of these compounds from phenylalanine have been constructed.

View Article and Find Full Text PDF

Wastewater sludge and wood chips were used as feedstock for the construction of two piles, Pile I ("PI") and Pile II ("PII"), at a ratio of 1:1 and 1:2 v/v, respectively. Each pile was originally 1.3-m high, 2.

View Article and Find Full Text PDF

In order to improve the estimation of surface gas emissions in landfill, we evaluated a combination of geophysical and greenhouse gas measurement methodologies. Based on fifteen 2D electrical resistivity tomographies (ERTs), longitudinal cross section images of the buried waste layers were developed, identifying place and cross section size of organic waste (OW), organic waste saturated in leachates (SOW), low organic and non-organic waste. CH(4) and CO(2) emission measurements were then conducted using the static chamber technique at 5 surface points along two tomographies: (a) across a high-emitting area, ERT#2, where different amounts of relatively fresh OW and SOW were detected, and (b) across the oldest (at least eight years) cell in the landfill, ERT#6, with significant amounts of OW.

View Article and Find Full Text PDF

Plant natural products derived from phenylalanine and the phenylpropanoid pathways are impressive in their chemical diversity and are the result of plant evolution, which has selected for the acquisition of large repertoires of pigments, structural and defensive compounds, all derived from a phenylpropanoid backbone via the plant-specific phenylpropanoid pathway. These compounds are important in plant growth, development and responses to environmental stresses and thus can have large impacts on agricultural productivity. While plant-based medicines containing phenylpropanoid-derived active components have long been used by humans, the benefits of specific flavonoids and other phenylpropanoid-derived compounds to human health and their potential for long-term health benefits have only been recognized more recently.

View Article and Find Full Text PDF

Plant natural products derived from phenylalanine and the phenylpropanoid pathway are impressive in their chemical diversity and are the result of plant evolution, which has selected for the acquisition of large repertoires of pigments, structural and defensive compounds, all derived from a phenylpropanoid backbone via the plant-specific phenylpropanoid pathway. These compounds are important in plant growth, development and responses to environmental stresses and thus can have large impacts on agricultural productivity. While plant-based medicines containing phenylpropanoid-derived active components have long been used by humans, the benefits of specific flavonoids and other phenylpropanoid-derived compounds to human health and their potential for long-term health benefits have been only recognized more recently.

View Article and Find Full Text PDF