Water is essential for the formation, stability and function of RNA-protein complexes. To delineate the structural role of water molecules in shaping the interactions between RNA and proteins, we comprehensively analyzed a dataset of 329 crystal structures of these complexes to identify water-mediated hydrogen-bonded contacts at RNA-protein interface. Our survey identified a total of 4963 water bridges.
View Article and Find Full Text PDFArginine (Arg) forks are noncovalent recognition motifs wherein an Arg interacts with the phosphates and guanine nucleobases of RNA, providing extraordinary specific RNA:protein recognition. In this work, we carried out an in-depth DFT based quantum mechanical investigation on all known classes of Arg forks to estimate their intrinsic structural stabilities and interaction energies. The optimized structures closely mimic the structural characteristics of Arg forks and this close match between experimental and optimized geometries suggests that Arg forks are intrinsically stable and do not require additional support from other RNA or protein components.
View Article and Find Full Text PDFThe emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad.
View Article and Find Full Text PDFNucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases.
View Article and Find Full Text PDFThis study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.
View Article and Find Full Text PDFThe aluminum ion battery (AIB) is a promising technology, but there is a lack of understanding of the desired nature of the batteries' electrolytes. The ionic charge carriers in these batteries are not simply Al3+ ions but the anionic AlCl4- and Al2Cl7-, which form in the electrolyte. Using computational analysis, this study illustrates the effect of mole ratios and organic solvents to improve the AIB electrolytes.
View Article and Find Full Text PDFRenal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na-K-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells.
View Article and Find Full Text PDFThis article highlights the formulation of a solid Δ-tetrahydrocannabinol (THC)-loaded ingestible prepared from pure THC distillate. A THC-containing ethanol-assisted cannabinoid nanoemulsion (EACNE) was created using a solvent displacement technique. Subsequently, the EACNE was converted to a solid powdery material while still retaining its THC potency, a format uniquely suited for "microdosing" applications.
View Article and Find Full Text PDFPost-transcriptionally modified bases play vital roles in many biochemical processes involving RNA. Analysis of the non-covalent interactions associated with these bases in RNA is crucial for providing a more complete understanding of the RNA structure and function; however, the characterization of these interactions remains understudied. To address this limitation, we present a comprehensive analysis of base stacks involving all crystallographic occurrences of the most biologically relevant modified bases in a large dataset of high-resolution RNA crystal structures.
View Article and Find Full Text PDFPeptide-based therapeutics are increasingly pushing to the forefront of biomedicine with their promise of high specificity and low toxicity. Although noncanonical residues can always be used, employing only the natural 20 residues restricts the chemical space to a finite dimension allowing for comprehensive in silico screening. Towards this goal, the dataset comprising all possible di-, tri-, and tetra-peptide combinations of the canonical residues has been previously reported.
View Article and Find Full Text PDFUnderstanding the frequency and structural context of discrete noncovalent interactions between nucleotides is of pivotal significance in establishing the rules that govern RNA structure and dynamics. Although T-shaped contacts (i.e.
View Article and Find Full Text PDFWe previously demonstrated that 50% of children with obesity from consanguineous families from Pakistan carry pathogenic variants in known monogenic obesity genes. Here, we have discovered a novel monogenetic recessive form of severe childhood obesity using an in-house computational staged approach. The analysis included whole-exome sequencing data of 366 children with severe obesity, 1,000 individuals of the Pakistan Risk of Myocardial Infarction Study (PROMIS) study, and 200,000 participants of the UK Biobank to prioritize genes harboring rare homozygous variants with putative effect on human obesity.
View Article and Find Full Text PDFThe limited diversity in targets of available antibiotic therapies has put tremendous pressure on the treatment of bacterial pathogens, where numerous resistance mechanisms that counteract their function are becoming increasingly prevalent. Here, we utilize an unconventional anti-virulence screen of host-guest interacting macrocycles, and identify a water-soluble synthetic macrocycle, Pillar[5]arene, that is non-bactericidal/bacteriostatic and has a mechanism of action that involves binding to both homoserine lactones and lipopolysaccharides, key virulence factors in Gram-negative pathogens. Pillar[5]arene is active against Top Priority carbapenem- and third/fourth-generation cephalosporin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, suppressing toxins and biofilms and increasing the penetration and efficacy of standard-of-care antibiotics in combined administrations.
View Article and Find Full Text PDFTetrahydrocannabinol (THC) and cannabidiol (CBD) are the two "major cannabinoids". However, their incorporation into clinical and nutraceutical preparations is challenging, owing to their limited bioavailability, low water solubility, and variable pharmacokinetic profiles. Understanding the organic chemistry of the major cannabinoids provides us with potential avenues to overcome these issues through derivatization.
View Article and Find Full Text PDFWeak intermolecular forces are typically very difficult to observe in highly competitive polar protic solvents as they are overwhelmed by the quantity of competing solvent. This is even more challenging for three-component ternary assemblies of pure organic compounds. In this work, we overcome these complications by leveraging the binding of fused aromatic N-heterocycles in an open resorcinarene cavity to template the formation of a three-component halogen-bonded ternary assembly in a protic polar solvent system.
View Article and Find Full Text PDFJ Chem Inf Model
January 2023
Nucleobase π-π stacking is one of the crucial organizing interactions within three-dimensional (3D) RNA architectures. Characterizing the structural variability of these contacts in RNA crystal structures will help delineate their subtleties and their role in determining function. This analysis of different stacking geometries found in RNA X-ray crystal structures is the largest such survey to date; coupled with quantum-mechanical calculations on typical representatives of each possible stacking arrangement, we determined the distribution of stacking interaction energies.
View Article and Find Full Text PDFIn the present work, 86 available high resolution X-ray structures of proteins that contain one or more guanidinium ions (Gdm) are analyzed for the distribution and nature of noncovalent interactions between Gdm and amino-acid residues. A total of 1044 hydrogen-bonding interactions were identified, of which 1039 are N-H⋯O, and five are N-H⋯N. Acidic amino acids are more likely to interact with Gdm (46% of interactions, 26% Asp and 20% Glu), followed by Pro (19% of interactions).
View Article and Find Full Text PDFCancer chemotherapy is often accompanied by severe off-target effects that both damage quality of life and can decrease therapeutic compliance. This could be minimized through selective delivery of cytotoxic agents directly to the cancer cells. This would decrease the drug dose, consequently minimizing side effects and cost.
View Article and Find Full Text PDFMono- and (bis)benzimidazoliums were evaluated both experimentally and computationally for their potential as pseudopolyrotaxane axle building blocks. Their aggregation and photophysical behavior, along with their potential to form a [2]pseudorotaxane with dibenzyl-24-crown-8, was studied through the synergistic application of 1D/2D and diffusion-ordered NMR spectroscopy, mass spectrometry, ultraviolet-visible and fluorescence spectroscopy, and time-dependent density functional theory. Their photophysical behavior was measured and modeled as a function of protonation state, solvent, and concentration.
View Article and Find Full Text PDFWith expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease.
View Article and Find Full Text PDFKynurenic acid is a by-product of tryptophan metabolism in humans, with abnormal levels indicative of disease. There is a need for water-soluble receptors that selectively bind kynurenic acid, allowing for detection and quantification. We report here the high-affinity binding of kynurenic acid in aqueous media to a resorcinarene salt receptor decorated with four flexible naphthalene groups at the upper rim.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers.
View Article and Find Full Text PDF