Background: The balance between the activity of the Na/K/Cl cotransporter (NKCC1) that introduces Cl into the cell and the K/Cl cotransporter (KCC2) that transports Cl outside the cell is critical in determining the inhibitory or excitatory outcome of GABA release. Mounting evidence suggests that the impairment of GABAergic inhibitory neurotransmission plays a crucial role in the pathophysiology of epilepsy, both in patients and animal models. Previous studies indicate that decreased KCC2 expression is linked to audiogenic seizures in GASH/Sal hamsters, highlighting that Cl imbalance can cause neuronal hyperexcitability.
View Article and Find Full Text PDFThe inhibition of Glycogen Synthase Kinase 3 β (GSK3β) by Ser phosphorylation affects many physiological processes, including the immune response. However, the consequences of GSK3β inhibition by alternative Ser phosphorylation remain poorly characterized. Here we have examined neuroinflammation in GSK3β Ser knock-in (KI) mice, in which the phosphorylation of Ser GSK3β is impaired.
View Article and Find Full Text PDFGSK3β is a constitutively active kinase that promotes cell death, which requires strict regulatory mechanisms. Although Akt-mediated phosphorylation at Ser is the default mechanism to inactivate GSK3β, phosphorylation of GSK3β at Ser by p38 MAPK has emerged as an alternative inhibitory pathway that provides cell protection and repair in response to DNA damage. Phosphorylation of Ser GSK3β has been detected in adult brain, where it has been related to neuronal survival and behavior.
View Article and Find Full Text PDFThe technical difficulty to isolate microglia, astrocytes and infiltrating immune cells from mouse brain is nowadays a limiting factor in the study of neuroinflammation. Brain isolation requirements are cell-type and animal-age dependent, but current brain dissociation procedures are poorly standardized. This lack of comprehensive studies hampers the selection of optimized methodologies.
View Article and Find Full Text PDFInhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG) -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO).
View Article and Find Full Text PDFPeritonitis is a disease caused by bacterial strains that have become increasingly resistant to many antibiotics. The development of alternative therapeutic compounds is the focus of extensive research, so novel nanoparticles (NPs) with activity against antibiotic-resistant bacteria should be developed. In this study, the antibacterial activity of quaternary ammonium polyethyleneimine (QA-PEI) NPs was evaluated against Streptococcus viridans, Stenotrophomonas maltophilia and Escherichia coli.
View Article and Find Full Text PDFThe study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration.
View Article and Find Full Text PDFIncrease in intracellular calcium ([Ca(2+) ]i ) is a key mediator of astrocyte signaling, important for activation of the calcineurin (CN)/nuclear factor of activated T cells (NFAT) pathway, a central mediator of inflammatory events. We analyzed the expression of matrix metalloproteinase 3 (Mmp3) in response to increases in [Ca(2+) ]i and the role of the CN/NFAT pathway in this regulation. Astrocyte Mmp3 expression was induced by overexpression of a constitutively active form of NFATc3, whereas other MMPs and tissue inhibitor of metalloproteinases (TIMP) were unaffected.
View Article and Find Full Text PDFSelenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes.
View Article and Find Full Text PDFAstrocytes react to brain injury triggering neuroinflammatory processes that determine the degree of neuronal damage. However, the signaling events associated to astrocyte activation remain largely undefined. The nuclear factor of activated T-cells (NFAT) is a transcription factor family implicated in activation of immune cells.
View Article and Find Full Text PDFAstrocytes are glial cells in the central nervous system (CNS) that play key roles in brain physiology, controlling processes, such as neurogenesis, brain energy metabolism and synaptic transmission. Recently, immune functions have also been demonstrated in astrocytes, influencing neuronal survival in the course of neuroinflammatory pathologies. In this regard, PKCepsilon (PKCε) is a protein kinase with an outstanding role in inflammation.
View Article and Find Full Text PDFAstrocytes are essential cells for maintaining brain integrity. We have recently shown that the transcription factor C/EBP homologous protein (CHOP), associated with endoplasmic reticulum (ER) stress, plays a key role in the astrocyte death induced by ischemia. Meanwhile, mediators of apoptosis downstream of CHOP in the ER stress-dependent pathway remain to be elucidated.
View Article and Find Full Text PDFNeurons are highly dependent on astrocyte survival during brain damage. To identify genes involved in astrocyte function during ischemia, we performed mRNA differential display in astrocytes after oxygen and glucose deprivation (OGD). We detected a robust down-regulation of S6 kinase 1 (S6K1) mRNA that was accompanied by a sharp decrease in protein levels and activity.
View Article and Find Full Text PDFContrarily to neurons, astrocytes can survive short periods of ischemia. We have searched for genes implicated in astrocyte resistance to ischemia using oxygen and glucose deprivation (OGD) as a stroke model. A RNA differential display approach uncovered the OGD induction of selenoprotein-S-encoding gene SEPS1.
View Article and Find Full Text PDFCa2+-dependent calcineurin is upregulated in reactive astrocytes in neuroinflammatory models. Therefore, the fact that the nuclear factor of activated T cells (NFAT) is activated in response to calcineurin qualifies this family of transcription factors with immune functions as candidates to mediate astrogliosis. Brain trauma induces a neuroinflammatory state in which ATP is released from astrocytes, stimulating calcium signalling.
View Article and Find Full Text PDFAstrocytes express voltage-gated calcium channels (VGCCs) that are upregulated in the context of the reactive astrogliosis occurring in several CNS pathologies. Moreover, the ability of selective calcium channel blockers to inhibit reactive astrogliosis has been revealed in a variety of experimental models. However, the functions and regulation of VGCC in astrocytes are still poorly understood.
View Article and Find Full Text PDFThe glitazones (or thiazolidinediones) are synthetic compounds used in type-2 diabetes, but they also have broad antiproliferative and anti-inflammatory properties still not well understood. We described previously the apoptotic effects of glitazones on astroglioma cells ( J Biol Chem 279: 8976-8985, 2004 ). At certain concentrations, we found a selective lethality on glioma cells versus astrocytes that was dependent on a rapid production of reactive oxygen species (ROS) and seemed unrelated to the receptor peroxisome proliferator activated receptor-gamma.
View Article and Find Full Text PDFDespite the importance of stellation to maintain astrocyte functionality, the intracellular signals controlling morphology in these cells are poorly characterized. Our goal was to examine the implication of protein kinase C epsilon (PKCepsilon) in astrocyte stellation. We found that the morphological transformation of astrocytes induced by exposure to the pro-inflammatory agent lipopolysaccharide is enhanced by adenoviral expression of wild-type PKCepsilon, and that activation of PKCepsilon is sufficient to trigger a dramatic stellation.
View Article and Find Full Text PDFIschemia has different consequences on the survival of astrocytes and neurons. Thus, astrocytes show a remarkable resistance to short periods of ischemia that are well known to cause neuronal death. We have used a cell culture model of stroke, oxygen, and glucose deprivation (OGD), to clarify the mechanisms responsible for the exclusive resistance of astrocytes to ischemia.
View Article and Find Full Text PDFThe glitazones or thiazolidinediones are ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma). The glitazones are used in the treatment of diabetes, regulate adipogenesis, inflammation, cell proliferation, and induce apoptosis in several cancer cell types. High grade astrocytomas are rapidly growing tumors derived from astrocytes, for which new treatments are needed.
View Article and Find Full Text PDFNumerous eukaryotic mRNAs contain sequences complementary to segments of the 18S and 28S rRNAs. Previous studies raised the possibility that these complementarities might allow mRNA-rRNA interactions and affect rates of translation. In the present study, we investigated the mRNA encoding the mouse Gtx homeodomain protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 1998
Our recent demonstration that many eukaryotic mRNAs contain sequences complementary to rRNA led to the hypothesis that these sequences might mediate specific interactions between mRNAs and ribosomes and thereby affect translation. In the present experiments, the ability of complementary sequences to bind to rRNA was investigated by using photochemical cross-linking. RNA probes with perfect complementarity to 18S or 28S rRNA were shown to cross-link specifically to the corresponding rRNA within intact ribosomal subunits.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1996
We applied the directional tag PCR subtractive hybridization method to construct a rat hypothalamic cDNA library from which cerebellar and hippocampal sequences had been depleted, enriching 20-30-fold for sequences expressed selectively in the hypothalamus. We studied a sample of 94 clones selected for enrichment in the subtracted library. These clones corresponded to 43 distinct mRNA species, about half of which were novel.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1996
To identify changes in gene expression that occur in chicken embryo brain (CEB) cells as a consequence of their binding to the extracellular matrix molecule cytotactin/tenascin (CT/TN), a subtractive hybridization cloning strategy was employed. One of the cDNA clones identified was predicted to encode 381 amino acids and although it did not resemble any known sequences in the nucleic acid or protein data bases, it did contain the sequence motif for the cysteine-rich C3HC4 type of zinc finger, also known as a RING-finger. This sequence was therefore designated the chicken-RING zinc finger (C-RZF).
View Article and Find Full Text PDFRat astrocytes synthesize and secrete two types of plasminogen activators (PAs), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), whose functions are related to cell proliferation, migration, and differentiation during development. The regulation of PAs produced by brain astrocytes is poorly understood. In a previous report we demonstrated that t-PA and u-PA are each independently regulated by cAMP-dependent protein kinase and protein kinase-C.
View Article and Find Full Text PDF